Journal of Applied Spectroscopy

, Volume 86, Issue 5, pp 836–842 | Cite as

Near-Surface Plasma Formed by Dual-Pulse Laser Action at Two Wavelengths on Titanium in Air

  • A. N. Chumakov
  • N. A. BosakEmail author
  • A. A. Ivanov

Spectra and structures of near-surface plasma torches were studied experimentally by measuring the specific mass loss and plume luminosity caused by dual-pulse laser radiation at wavelengths 1064 and 532 nm on titanium in air as functions of the time between laser pulses and their sequence. Dependences of the laser-plasma temperature and concentration of charged particles on the paired laser pulse parameters were established at laser radiation power densities q1064 ≤ 3.1·109 and q532 ≤ 2.7·109 W/cm2 for λ = 1064 and 532 nm. The optimal conditions for recording erosion plasma spectra had the initial effect from second-harmonic radiation with a time interval between pulses of 4–5 μs; for specific mass loss, 3–6 μs. The results were important for enhancing the efficiency of laser emission spectral analysis and laser-plasma processing of materials.


dual-pulse laser action laser plasma plasma-torch structure plasma temperature electron concentration specific mass loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals [in Russian], A. M. Bonch-Bruevich and M. A. El′yashevich (Eds.), Nauka, Moscow (1970).Google Scholar
  2. 2.
    A. M. Prokhorov, V. I. Konov, I. Ursu, and I. N. Mikheilesku, Interaction of Laser Radiation with Metals [in Russian], Nauka, Moscow (1988).Google Scholar
  3. 3.
    V. I. Bergel′son, A. P. Golub′, T. V. Loseva, I. V. Nemchinov, T. I. Orlova, S. P. Popov, and V. V. Svettsov, Kvantovaya Elektron. (Moscow), 1, No. 5, 1268–1271 (1974).Google Scholar
  4. 4.
    M. A. El′yashevich, L. Ya. Min′ko, G. S. Romanov, Yu. A. Stankevich, Yu. A. Chivel′, and A. N. Chumakov, Izv. Akad. Nauk SSSR, Ser. Fiz., 49, No. 6, 1132–1139 (1985).Google Scholar
  5. 5.
    L. Ya. Min′ko, A. N. Chumakov, and N. A. Bosak, Kvantovaya Elektron. (Moscow), 17, No. 11, 1480–1484 (1990).Google Scholar
  6. 6.
    R. Sattmann, V. Strum, and R. Noll, J. Phys. D: Appl. Phys., 28, 2181–2187 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    S. G. Gornyi, A. M. Grigor′ev, M. I. Patrov, V. D. Solov′ev, and G. A. Turichin, Kvantovaya Elektron. (Moscow), 32, No. 10, 929–932 (2002).Google Scholar
  8. 8.
    S. M. Klimentov, P. A. Pivovarov, V. I. Konov, D. Breitling, and F. Dausinger, Kvantovaya Elektron. (Moscow), 34, No. 6, 537–540 (2004).Google Scholar
  9. 9.
    S. M. Pershin, Kvantovaya Elektron. (Moscow), 39, No. 1, 63–67 (2009).Google Scholar
  10. 10.
    S. M. Pershin, Kvantovaya Elektron. (Moscow), 16, No. 2, 325–330 (1989).Google Scholar
  11. 11.
    L. Ya. Min′ko, A. N. Chumakov, and G. I. Bakanovich, Zh. Prikl. Spektrosk., 61, Nos. 5–6, 476–484 (1994) [L. Ya. Min′ko, A. N. Chumakov, and G. I. Bakanovich, J. Appl. Spectrosc., 61, 805–811 (1994)].Google Scholar
  12. 12.
    M. L. Petukh, V. A. Rozantsev, A. D. Shirokanov, and A. A. Yankovskii, Zh. Prikl. Spektrosk., 67, No. 6, 798–801 (2000) [M. L Petukh, V. A. Rozantsev, A. D. Shirokanov, and A. A. Yankovskii, J. Appl. Spectrosc., 67, 1097–1101 (2000)].Google Scholar
  13. 13.
    R. Noll, Laser-Induced Breakdown Spectroscopy. Fundamentals and Applications, Springer, Berlin–Heidelberg (2012).Google Scholar
  14. 14.
    A. N. Chumakov, V. B. Avramenko, and N. A. Bosak, Zh. Prikl. Spektrosk., 79, No. 2, 279–287 (2012) [A. N. Chumakov, V. B. Avramenko, and N. A. Bosak, J. Appl. Spectrosc., 79, 261–268 (2012)].Google Scholar
  15. 15.
    G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Appl. Phys. B: Lasers Opt., 80, 559–568 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    E. A. Ershov-Pavlov, K. Yu. Katsalap, K. L. Stepanov, and Yu. A. Stankevich, Spectrochim. Acta, Part B, 63, 1024–1037 (2008).Google Scholar
  17. 17.
    A. A. I. Khalil, Laser Phys., 20, No. 1, 238–244 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, Chichester, West Sussex, England, Hoboken, NJ (2006).Google Scholar
  19. 19.
    V. Pinon and D. Anglos, Spectrochim. Acta, Part B, 64, 950–960 (2009).Google Scholar
  20. 20.
    S. Amoruso, R. Bruzzese, X. Wang, G. O′Connel, and J. G. Lunney, J. Appl. Phys., 108, 113302 (2010).Google Scholar
  21. 21.
    V. S. Burakov, A. F. Bokhanov, M. I. Nedel′ko, and N. V. Tarasenko, Kvantovaya Elektron. (Moscow), 33, No. 12, 1065–1071 (2003).Google Scholar
  22. 22.
    A. N. Chumakov, N. A. Bosak, and V. L. Rudakov, in: Proceedings of the 2nd Belarusian Cosmic Congress [in Russian], 2005, pp. 45–49.Google Scholar
  23. 23.
    A. N. Chumakov, N. A. Bosak, and A. V. Panina, in: Proceedings of the VIIIth International Scientific Conference Laser Physics and Optical Technologies, Minsk (2010), Vol. 2, pp. 150–153.Google Scholar
  24. 24.
    A. N. Chumakov, N. A. Bosak, and A. V. Panina, Zh. Prikl. Spektrosk., 84, No. 4, 595–602 (2017) [A. N. Chumakov, N. A. Bosak, and A. V. Panina, J. Appl. Spectrosc., 84, 620–626 (2017)].Google Scholar
  25. 25.
    A. De Giacomo, M. Dell′Aglio, A. Santagata, and R. Teghil, Spectrochim. Acta, Part B, 60, 935–947 (2005).Google Scholar
  26. 26.
    H. Hegazy, H. A. Abd El-Ghany, S. H. Allam, and T. M. El-Sherbini, Appl. Phys. B: Lasers Opt., 117, 343–352 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    A. M. Elsied, P. C. Dieffenbach, P. K. Diwakar, and A. Hassanein, Spectrochim. Acta, Part B, 143, 26–31 (2018).Google Scholar
  28. 28.
    H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964), 580 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of SciencesMinskBelarus

Personalised recommendations