Journal of Applied Spectroscopy

, Volume 86, Issue 5, pp 831–835 | Cite as

X-Ray Photoelectron Spectroscopy and Raman Studies of ZnO:Ce Nanocrystals*

  • G. AchammaEmail author
  • M. S. Qureshi
  • M. M. Malik

Cerium-doped ZnO nanopowders were synthesized using the simple refluxing technique. The synthesized samples were characterized by X-ray diffraction, which confirmed their hexagonal structure. No additional peaks due to the interstitial incorporation or substitutions of Ce4+ ions into the ZnO lattice were observed. Ce 3d3/2 and 3d5/2 had well-separated orbits of Δ = 18.26 eV. The observed spin-orbit splitting as well as the separation between 3d5/2 peaks by 16.47 eV were in good agreement with those reported. The presence of 917.85 eV also confirmed the presence of Ce4+ ions. Raman studies showed that for Ce-doped ZnO the nonpolar interaction E2H grew strong and had a dominant intensity.


nanocrystal nanopowder X-ray diffraction Raman spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Reshchikov, H. Morkoc, B. Nemeth, J. Nause, J. Xie, B. Hertog, and A. Osinsky, Phys. B, 401402, 358–361 (2007).Google Scholar
  2. 2.
    Seung Soo Lee, Wensi Song, Minjung Cho, Hema L. Puppala, Phuc Nguyen, Huiguang Zhu, Laura Segatori, and Vicki L. Colvin, ACS Nano, 7, No. 11, 9693–9703 (2013).CrossRefGoogle Scholar
  3. 3.
    C. Karunakaran, P. Gomathisankar, and G. Manikandan, Chem. Phys., 123, 585–594 (2010).Google Scholar
  4. 4.
    Jinghai Yang, Ming Gao, Lili Yang, Yongjun Zhang, Jihui Lang, Dandan Wang, Yaxin Wang Huilian Liu, and Hougang Fan, Appl. Surf. Sci., 255, 2646–2650 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    Wai Kian Tan, Khairunisak Abdul Razak, Zainovia Lockman, Go Kawamura, Hiroyuki Muto, and Atsunori Matsuda, Opt. Mater., 35, 1992–1907 (2013).CrossRefGoogle Scholar
  6. 6.
    J. Iqbal, X. Liu, H. Zhu, Z.B. Wu, Y. Zhang, D. Yu, and R. Yu, Acta Mater., 57, 4790–4796 (2009).CrossRefGoogle Scholar
  7. 7.
    G. Srinivasan, R. T. Rajendra Kumar, and J. Kumar, Sol-Gel Sci. Technol., 43, 171–177 (2007).CrossRefGoogle Scholar
  8. 8.
    Achamma George, Suchinder K. Sharma, Santa Chawla M. M. Malik, and M. S. Qureshi, J. Alloys Compd., 509, 5942 (2011).CrossRefGoogle Scholar
  9. 9.
    E. Beche, P. Charvin, D. Perarnau, S. Abanades, and G. Flamant, Surf. Interface Anal., 40, 264–267 (2008).CrossRefGoogle Scholar
  10. 10.
    A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev., 181, 1351–1363 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    M. L. Glasser, J. Phys. Chem. Solids, 10, 229–241 (1959).ADSCrossRefGoogle Scholar
  12. 12.
    Jihui Lang, Qiang Han, Jinghai Yang, Changsheng Li, Xue Li, Lili Yang,Yongjun Zhang, Ming Gao, Dandan Wang, and Jian Cao, J. Appl. Phys., 107, 074302(1–4) (2010).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Catholicate CollegePathanamthitta KeralaIndia
  2. 2.Maulana Azad National Institute of TechnologyBhopalIndia

Personalised recommendations