Advertisement

Thermochromism of Corrole Solutions in Ethanol

  • Y. H. Ajeeb
  • A. A. Minchenya
  • P. G. Klimovich
  • W. Maes
  • M. M. KrukEmail author
Article

The temperature dependence of electronic absorption spectra of a family of 5,10,15-triarylcorroles in EtOH solution was studied in the range 288–328 K. Corroles in EtOH existed as mixtures of the free base and deprotonated form, the ratio of which was determined by the donor–acceptor properties of the peripheral substituents. Free corrole bases deprotonated as the temperature rose. Deprotonation obeyed the van′t-Hoff equation with activation energy Ea = 2.0 kcal/mol, which was the same within measurement error limits for all studied compounds. The temperature was proposed to affect indirectly the deprotonation by changing the EtOH dielectric constant. The decreasing dielectric constant with increasing temperature shifted the acid–base equilibrium toward formation of the deprotonated form.

Keywords

corrole free base acid–base equilibria activation energy thermochromism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. R. Harrison, O. J. R. Hodder, and D. C. Hodgkin, J. Chem. Soc. B, 640–645 (1971).Google Scholar
  2. 2.
    W. J. D. Beenken, M. Presselt, T. H. Ngo, W. Dehaen, W. Maes, and M. M. Kruk, J. Phys. Chem. A, 118, 862–871 (2014).CrossRefGoogle Scholar
  3. 3.
    D. V. Klenitskii and N. N. Kruk, Tr. Belarus. Gos. Tekhnol. Univ.: Khim., Tekhnol. Org. Veshchestv Biotekhnol., 177, 24–28 (2015) [Proc. Belarus. State Technol. Univ., Chem., Technol. Org. Subst. Biotechnol., 177, 20–23 (2015)].Google Scholar
  4. 4.
    M. M. Kruk, D. V. Klenitsky, and W. Maes, Macroheterocycles, 12, 58–67 (2019).CrossRefGoogle Scholar
  5. 5.
    J. Takeda and M. Sato, Chem. Lett., 11, 971–972 (1995).CrossRefGoogle Scholar
  6. 6.
    M. Roucan, M. Kielmann, S. J. Connon, S. S. R. Bernhard, and M. O. Senge, Chem. Commun., 54, 26–29 (2018).CrossRefGoogle Scholar
  7. 7.
    M. Kielmann and M. O. Senge, Angew. Chem., Int. Ed., 58, 418–441 (2019).CrossRefGoogle Scholar
  8. 8.
    M. Kruk, T. H. Ngo, V. Savva, A. Starukhin, W. Dehaen, and W. Maes, J. Phys. Chem. A, 116, 10704–10711 (2012).CrossRefGoogle Scholar
  9. 9.
    M. M. Kruk, W. Maes, and R. Paolesse, in: Abstr. 10th Int. Сonf. ICPP-10, July 1–7, 2018, Munich, Germany (2018), p. 138.Google Scholar
  10. 10.
    M. M. Kruk, W. Maes, and R. Paolesse, in: Abstr. Int. Workshop on Photochemistry of Organic Molecules Dedicated to the 85th Anniversary of Academician G. P. Gurinovich, September 18–20, 2018, Minsk, Belarus (2018), p. 43.Google Scholar
  11. 11.
    M. J. Kamlet and R. W. Taft, J. Am. Chem. Soc., 98, 377–383 (1976).CrossRefGoogle Scholar
  12. 12.
    R. W. Taft and M. J. Kamlet, J. Am. Chem. Soc., 98, 2886–2894 (1976).CrossRefGoogle Scholar
  13. 13.
    W. Maes, T. H. Ngo, J. Vanderhaeghen, and W. Dehaen, Org. Lett., 9, 3165–3168 (2007).CrossRefGoogle Scholar
  14. 14.
    Yu. B. Ivanova, V. A. Savva, N. Zh. Mamardashvili, A. S. Starukhin, T. H. Ngo, W. Dehaen, W. Maes, and M. M. Kruk, J. Phys. Chem. A, 116, 10683–10694 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Meot-Ner and A. D. Adler, J. Am. Chem. Soc., 97, 5107–5111 (1975).CrossRefGoogle Scholar
  16. 16.
    Yu. B. Ivanova, S. G. Pukhoovskaya, N. Zh. Mamardashvili, O. I. Koifman, and M. M. Kruk, J. Mol. Liq., 275, 491–498 (2019).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Y. H. Ajeeb
    • 1
    • 2
  • A. A. Minchenya
    • 2
  • P. G. Klimovich
    • 2
  • W. Maes
    • 3
  • M. M. Kruk
    • 2
    Email author
  1. 1.Arts, Sciences and Technology University in LebanonBeirutLebanon
  2. 2.Belarusian State Technological UniversityMinskBelarus
  3. 3.Institute for Materials Research (IMO-IMOMEC)Hasselt UniversityDiepenbeekBelgium

Personalised recommendations