Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 765–770 | Cite as

Prediction Results of Different Modeling Methods in Soil Nutrient Concentrations Based on Spectral Technology

  • X.-Y. Li
  • P.-P. Fan
  • Y. Liu
  • G.-L. Hou
  • Q. Wang
  • M.-R. LvEmail author
Article
  • 9 Downloads

Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible near-infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modeling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modeling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.

Keywords

UV-visible near-infrared reflectance spectroscopy soil nutrient least squares support vector machines back propagation neural network modeling methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Summers, M. Lewis, and B. Ostendorf, Ecol. Indic., 11, No. 1, 123–131 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Vohland, M. Ludwig, and S. Thiele-Bruhn, Geoderma, 223225, No. 1, 88–96 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Tiquia, J. Lloyd, and D. A. Herms, Appl. Soil Ecol., 21, No. 1, 31–48 (2002).CrossRefGoogle Scholar
  4. 4.
    H. Q. Ding and Q. P. Lu, Spectrosc. Spectr. Anal., 32, No. 1, 88–91 (2012).Google Scholar
  5. 5.
    L. Luan, Y. Wang, and X. Li, J. Near Infrared Spectrosc., 24, No. 4, 363–372 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. M. Rady, D. E. Guyer, and W. Kirk, J. Food Eng., 135, No. 2, 11–25 (2014).CrossRefGoogle Scholar
  7. 7.
    W. Ng, B. P. Malone, and B. Minasny, Geoderma, 289, 150–160 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    A. Sakudo, Clin. Chim. Acta, 455, No. 3, 181–188 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Jia, H. Li, and Y. Wang, Geoderma, 268, 92–99 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    D. J. Brown, K. D. Shepherd, and M. G. Walsh, Geoderma, 132, No. 3, 273–290 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Bilgili, H. M. V. Es, and F. Akbas, J. Arid. Environ., 74, No. 2, 229–238 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Feyziyev, M. Babayev, and S. Priori, Open J. Soil Sci., 06, No. 3, 52–58 (2016).CrossRefGoogle Scholar
  13. 13.
    T. Naes and H. Martens, J. Chemom., 2, No. 2, 155–167 (1988).CrossRefGoogle Scholar
  14. 14.
    S. Wold, M. Sjöström, and L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109–130 (2001).CrossRefGoogle Scholar
  15. 15.
    J. A. K. Suykens, J. Vandewalle, Neural Process. Lett., 9, No. 3, 293–300 (1999).CrossRefGoogle Scholar
  16. 16.
    R. Hecht-Nielsen, Neural Networks, 1, No. 1, 65–93 (1988).Google Scholar
  17. 17.
    K. Kawamura, Y. Tsujimoto, and M. Rabenarivo, Remote Sens., 9, No. 10, 1081 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    M. Tatzber, F. Mutsch, and A. Mentler, Appl. Spectrosc., 64, No. 10, 1167–1175 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    Cheng Wen Chang, D. A. Laird, and M. J. Mausbach, Soil Sci. Soc. Am. J., 65, No. 2, 480–490 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    S. Wold, M. Sjöström, and L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109–130 (2001).CrossRefGoogle Scholar
  21. 21.
    R. M. Balabin and E. I. Lomakina, Analyst, 136, No. 8, 1703–1712 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    D. K. Ghose, S. S. Panda, and P. C. Swain, J. Hydrol., 394, Nos. 3–4, 296–304 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    R. K. Douglas, S. Nawar, and M. C. Alamar, Sci. Total Environ., 616–617, 147–155 (2017).Google Scholar
  24. 24.
    D. Summers, M. Lewis, and B. Ostendorf, Ecol. Indic., 11, No. 1, 123–131 (2011).CrossRefGoogle Scholar
  25. 25.
    L. J. Janik, S. T. Forrester, and A. Rawson, Chemom. Intell. Lab. Syst., 97, No. 2, 179–188 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Wang and D. Hu, Brain Neural Networks, 1, 279–283 (2006).ADSGoogle Scholar
  27. 27.
    Zhi-biao, Zhao, and Yang, J. Bionic. Eng., 5, No. 3, 253–257 (2008).CrossRefGoogle Scholar
  28. 28.
    Q. Zhang, Q. Li, and G. Zhang, Anal. Methods, 4, No. 7, 2039–2047 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • X.-Y. Li
    • 1
    • 2
    • 3
  • P.-P. Fan
    • 1
    • 2
    • 3
  • Y. Liu
    • 1
    • 2
    • 3
  • G.-L. Hou
    • 1
    • 2
    • 3
  • Q. Wang
    • 1
    • 2
    • 3
  • M.-R. Lv
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Oceanographic InstrumentationQilu University of Technology (Shandong Academy of Sciences)Jinan ShiChina
  2. 2.Shandong Provincial Key Laboratory of Ocean Environmental Monitoring TechnologyJinan ShiChina
  3. 3.National Engineering and Technological Research Center of Marine Monitoring EquipmentJinan ShiChina

Personalised recommendations