Synthesis and Computational Studies of Molecular Structure and Vibrational Spectra of 2-Amino-4-(4-Nitrophenyl)-4H-Pyrano-[3,2-H]Quinolines
- 16 Downloads
We have disclosed the synthesis of pyranoquinoline derivatives via a one-pot reaction of 4-nitro benz aldehyde, malononitrile/ethyl cyanoacetate and 8-hydroxyquinoline using 30 mol.% DMAP in ethanol under reflux conditions. The Fourier transform infrared spectra of ethyl 2-amino-4-(4-nitrophenyl)-4H-pyra no[3,2-h]quinoline-3-carboxylate were recorded within the range 4000–400 cm–1. The Hartree–Fock and density functional theory on the 6-311G basis set have been utilized to calculate molecular geometry, vibrational frequencies, atomic charges and thermodynamic parameters. Further, the vibrational energy distribution analysis program was applied to assign the vibrational wavenumbers based on potential energy distribution. The HOMO–LUMO energies, the temperature dependence of the thermodynamic properties, the total electron density, and molecular electrostatic potential maps are also studied.
Keywords
Hartree–Fock density functional theory Fourier transform infrared spectra vibrational energy distribution analysis HOMO–LUMOPreview
Unable to display preview. Download preview PDF.
References
- 1.S. M. Wickel, C. A. Citron, and J. S. Dickschat, Eur. J. Org. Chem., 2906–2913 (2013).CrossRefGoogle Scholar
- 2.J. A. Makawana, M. P. Patel, and R. G. Patel, Arch. Pharm., 345, 314–322 (2012).CrossRefGoogle Scholar
- 3.Y. Deng, J. P. Lee, M. Tianasoa-Ramamonjy, J. K. Synder, S. A. D. Etages, D. Synder, M. P. Kanada, and C. J. Turner, J. Nat. Prod., 63, 1082–1089 (2000).CrossRefGoogle Scholar
- 4.N. A. Keiko, L. G. Stepanova, M. G. Voronkov, G. I. Potapova, N. O. Gudratov, and E. M. Treshchalina, J. Pharm. Chem., 36, 407–409 (2002).CrossRefGoogle Scholar
- 5.S. Prado, H. Ledeit, S. Michel, M. Koch, J. C. Darbord, S. T. Cole, F. Tillequin, and P. Brodin, Bioorg. Med. Chem., 14, 5423–5428 (2006).CrossRefGoogle Scholar
- 6.A. R. Saundane, K. Vijaykumar, and A. V. Vaijinath, Bioorg. Med. Chem. Lett., 23, 1978–1984 (2013).CrossRefGoogle Scholar
- 7.P. G. Pietta, J. Nat. Prod., 63, 1035–1042 (2000).CrossRefGoogle Scholar
- 8.M. D. Aytemir and B. Özçelik, Eur. J. Med. Chem., 45, 4089–4095 (2010).CrossRefGoogle Scholar
- 9.P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, P. Wyatt, N. Taylor, D. Green, R. Bethell, S. Madar, R. J. Fenton, P. J. Morley, T. Pateman, and A. Beresford, J. Med. Chem., 41, 787–797 (1998).CrossRefGoogle Scholar
- 10.A. Venkatesham, R. S. Rao, K. Nagaiah, J. S. Yadav, G. RoopaJones, S. J. Basha, B. Sridhar, and A. Addlagatta, Med. Chem. Commun., 3, 652–658 (2012).CrossRefGoogle Scholar
- 11.L. Bonsignore, G. Loy, D. Secci, and A. Calignano, Eur. J. Med. Chem., 28, 517–520 (1993).CrossRefGoogle Scholar
- 12.D. Armetso, W. M. Horspool, N. Martin, A. Ramos, and C. Seoane, J. Org. Chem., 54, 3069–3072 (1989).CrossRefGoogle Scholar
- 13.K. H. Lee, S. M. Kim, J. Y. Kim, Y. K. Kim, and S. S. Yoon, Bull. Korean Chem. Soc., 31, 2884–2888 (2010).CrossRefGoogle Scholar
- 14.R. Klingenstein, P. Melnyk, S. R. Leliveld, A. Ryckebusch, and C. Korth, J. Med. Chem., 49, 5300–5308 (2006).CrossRefGoogle Scholar
- 15.S. Vandekerckhove, H. G. Tran, T. Desmet, and M. D'hooghe, Bioorg. Med. Chem. Lett., 23, 4641–4643 (2013).CrossRefGoogle Scholar
- 16.K. C. Fang, Y. L. Chen, J. Y. Sheu, T. C. Wang, and C. C. Tzeng, J. Med. Chem., 43, 3809–3812 (2000).CrossRefGoogle Scholar
- 17.A. K. Sadana, Y. Mirza, K. R. Aneja, and O. Prakash, Eur. J. Med. Chem., 38, 533–536 (2003).CrossRefGoogle Scholar
- 18.Y. L. Chen, I. L. Chen, C. M. Lu, C. C. Tzeng, L. T. Tsao, and J. P. Wang, Bioorg. Med. Chem., 12, 387–392 (2004).CrossRefGoogle Scholar
- 19.G. Barbosa-Lima, A. M. Moraes, A. S. Araújo, E. T. Silva, C. S. Freitas, Y. R. Vieira, A. Marttorelli, J. C. Neto,Google Scholar
- 20.P. T. Bozza, M. V. N. Souza, and T. M. L. Souza, Eur. J. Med. Chem., 127, 334–340 (2017).Google Scholar
- 21.K. Rurack, A. Danel, K. Rotkiewicz, D. Grabka, M. Spieles, and W. Rettig, Org. Lett.,4, 4647–4650 (2002).CrossRefGoogle Scholar
- 22.F. Liang, Z. Xie, L. Wang, X. Jing, and F. Wang, Tetrahedron Lett., 43, 3427–3430 (2002).CrossRefGoogle Scholar
- 23.N. J. Parmar, R. A. Patel, B. D. Parmar, and N. P. Talpada, Bioorg. Med. Chem. Lett., 23, 1656 (2013).CrossRefGoogle Scholar
- 24.P. Gunasekaran, P. Prasanna, and S. Perumal, Tetrahedron Lett., 55, 329 (2014).CrossRefGoogle Scholar
- 25.Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT (2013).Google Scholar
- 26.M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).Google Scholar
- 27.A. D. Becke, J. Chem. Phys., 98, 5648 (1993).ADSCrossRefGoogle Scholar
- 28.A. D. Becke, Phys. Rev. A, 38, 3098 (1988).ADSCrossRefGoogle Scholar
- 29.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).ADSCrossRefGoogle Scholar
- 30.A. Frisch, A. B. Neilson, and A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc. Pittsburgh, PA (2000).Google Scholar
- 31.R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).ADSCrossRefGoogle Scholar
- 32.H. Tanak, Y. Köysal, Y. Ünver, M. Yavuz, S. Isık, and K. Sancak, Mol. Phys., 108, 127 (2010).ADSCrossRefGoogle Scholar
- 33.S. Muthu and E. I. Paulraj, Solid State Sci., 14, 476 (2012).ADSCrossRefGoogle Scholar
- 34.R. Mathammal, N. Jayamani, and N. Geetha, J. Spectrosc., 2013, 171735 (2013).CrossRefGoogle Scholar
- 35.E. Kavitha, N. Sundaraganesan, and S. Sebastian, Ind. J. Pure Appl. Phys., 48, 20–30 (2010)Google Scholar
- 36.A. Jayaprakash, V. Arjunan, and S. Mohan, Spectrochim. Acta, A, 81, 620–630 (2011).ADSCrossRefGoogle Scholar
- 37.J. BevanOtt and J. Boerio-Goates, Chemical Thermodynamics: Principles and Applications, Academic Press, San Diego (2000).Google Scholar
- 38.I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York (1976).Google Scholar
- 39.J. M. Semanario, Recent Developments and Applications of Modern Density Functional Theory, 4, Elsevier, The Netherlands (1996).Google Scholar
- 40.T. Yesilkaynak, G. Binzer, F. Mehmet Emen, U. Florke, N. Kulcu, and H. Arslan, Eur. J. Chem., 1, 1 (2010).CrossRefGoogle Scholar
- 41.B. Kosar and C. Albayrak, Spectrochim. Acta, A, 78, 96 (2011).CrossRefGoogle Scholar