Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 715–725 | Cite as

Synthesis and Computational Studies of Molecular Structure and Vibrational Spectra of 2-Amino-4-(4-Nitrophenyl)-4H-Pyrano-[3,2-H]Quinolines

  • P. Kour
  • A. Kumar
  • A. Uppal
  • Y. Khajuria
  • V. K. SinghEmail author

We have disclosed the synthesis of pyranoquinoline derivatives via a one-pot reaction of 4-nitro benz aldehyde, malononitrile/ethyl cyanoacetate and 8-hydroxyquinoline using 30 mol.% DMAP in ethanol under reflux conditions. The Fourier transform infrared spectra of ethyl 2-amino-4-(4-nitrophenyl)-4H-pyra no[3,2-h]quinoline-3-carboxylate were recorded within the range 4000–400 cm–1. The Hartree–Fock and density functional theory on the 6-311G basis set have been utilized to calculate molecular geometry, vibrational frequencies, atomic charges and thermodynamic parameters. Further, the vibrational energy distribution analysis program was applied to assign the vibrational wavenumbers based on potential energy distribution. The HOMO–LUMO energies, the temperature dependence of the thermodynamic properties, the total electron density, and molecular electrostatic potential maps are also studied.


Hartree–Fock density functional theory Fourier transform infrared spectra vibrational energy distribution analysis HOMO–LUMO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Wickel, C. A. Citron, and J. S. Dickschat, Eur. J. Org. Chem., 2906–2913 (2013).CrossRefGoogle Scholar
  2. 2.
    J. A. Makawana, M. P. Patel, and R. G. Patel, Arch. Pharm., 345, 314–322 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. Deng, J. P. Lee, M. Tianasoa-Ramamonjy, J. K. Synder, S. A. D. Etages, D. Synder, M. P. Kanada, and C. J. Turner, J. Nat. Prod., 63, 1082–1089 (2000).CrossRefGoogle Scholar
  4. 4.
    N. A. Keiko, L. G. Stepanova, M. G. Voronkov, G. I. Potapova, N. O. Gudratov, and E. M. Treshchalina, J. Pharm. Chem., 36, 407–409 (2002).CrossRefGoogle Scholar
  5. 5.
    S. Prado, H. Ledeit, S. Michel, M. Koch, J. C. Darbord, S. T. Cole, F. Tillequin, and P. Brodin, Bioorg. Med. Chem., 14, 5423–5428 (2006).CrossRefGoogle Scholar
  6. 6.
    A. R. Saundane, K. Vijaykumar, and A. V. Vaijinath, Bioorg. Med. Chem. Lett., 23, 1978–1984 (2013).CrossRefGoogle Scholar
  7. 7.
    P. G. Pietta, J. Nat. Prod., 63, 1035–1042 (2000).CrossRefGoogle Scholar
  8. 8.
    M. D. Aytemir and B. Özçelik, Eur. J. Med. Chem., 45, 4089–4095 (2010).CrossRefGoogle Scholar
  9. 9.
    P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, P. Wyatt, N. Taylor, D. Green, R. Bethell, S. Madar, R. J. Fenton, P. J. Morley, T. Pateman, and A. Beresford, J. Med. Chem., 41, 787–797 (1998).CrossRefGoogle Scholar
  10. 10.
    A. Venkatesham, R. S. Rao, K. Nagaiah, J. S. Yadav, G. RoopaJones, S. J. Basha, B. Sridhar, and A. Addlagatta, Med. Chem. Commun., 3, 652–658 (2012).CrossRefGoogle Scholar
  11. 11.
    L. Bonsignore, G. Loy, D. Secci, and A. Calignano, Eur. J. Med. Chem., 28, 517–520 (1993).CrossRefGoogle Scholar
  12. 12.
    D. Armetso, W. M. Horspool, N. Martin, A. Ramos, and C. Seoane, J. Org. Chem., 54, 3069–3072 (1989).CrossRefGoogle Scholar
  13. 13.
    K. H. Lee, S. M. Kim, J. Y. Kim, Y. K. Kim, and S. S. Yoon, Bull. Korean Chem. Soc., 31, 2884–2888 (2010).CrossRefGoogle Scholar
  14. 14.
    R. Klingenstein, P. Melnyk, S. R. Leliveld, A. Ryckebusch, and C. Korth, J. Med. Chem., 49, 5300–5308 (2006).CrossRefGoogle Scholar
  15. 15.
    S. Vandekerckhove, H. G. Tran, T. Desmet, and M. D'hooghe, Bioorg. Med. Chem. Lett., 23, 4641–4643 (2013).CrossRefGoogle Scholar
  16. 16.
    K. C. Fang, Y. L. Chen, J. Y. Sheu, T. C. Wang, and C. C. Tzeng, J. Med. Chem., 43, 3809–3812 (2000).CrossRefGoogle Scholar
  17. 17.
    A. K. Sadana, Y. Mirza, K. R. Aneja, and O. Prakash, Eur. J. Med. Chem., 38, 533–536 (2003).CrossRefGoogle Scholar
  18. 18.
    Y. L. Chen, I. L. Chen, C. M. Lu, C. C. Tzeng, L. T. Tsao, and J. P. Wang, Bioorg. Med. Chem., 12, 387–392 (2004).CrossRefGoogle Scholar
  19. 19.
    G. Barbosa-Lima, A. M. Moraes, A. S. Araújo, E. T. Silva, C. S. Freitas, Y. R. Vieira, A. Marttorelli, J. C. Neto,Google Scholar
  20. 20.
    P. T. Bozza, M. V. N. Souza, and T. M. L. Souza, Eur. J. Med. Chem., 127, 334–340 (2017).Google Scholar
  21. 21.
    K. Rurack, A. Danel, K. Rotkiewicz, D. Grabka, M. Spieles, and W. Rettig, Org. Lett.,4, 4647–4650 (2002).CrossRefGoogle Scholar
  22. 22.
    F. Liang, Z. Xie, L. Wang, X. Jing, and F. Wang, Tetrahedron Lett., 43, 3427–3430 (2002).CrossRefGoogle Scholar
  23. 23.
    N. J. Parmar, R. A. Patel, B. D. Parmar, and N. P. Talpada, Bioorg. Med. Chem. Lett., 23, 1656 (2013).CrossRefGoogle Scholar
  24. 24.
    P. Gunasekaran, P. Prasanna, and S. Perumal, Tetrahedron Lett., 55, 329 (2014).CrossRefGoogle Scholar
  25. 25.
    Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT (2013).Google Scholar
  26. 26.
    M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).Google Scholar
  27. 27.
    A. D. Becke, J. Chem. Phys., 98, 5648 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    A. D. Becke, Phys. Rev. A, 38, 3098 (1988).ADSCrossRefGoogle Scholar
  29. 29.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).ADSCrossRefGoogle Scholar
  30. 30.
    A. Frisch, A. B. Neilson, and A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc. Pittsburgh, PA (2000).Google Scholar
  31. 31.
    R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).ADSCrossRefGoogle Scholar
  32. 32.
    H. Tanak, Y. Köysal, Y. Ünver, M. Yavuz, S. Isık, and K. Sancak, Mol. Phys., 108, 127 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    S. Muthu and E. I. Paulraj, Solid State Sci., 14, 476 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    R. Mathammal, N. Jayamani, and N. Geetha, J. Spectrosc., 2013, 171735 (2013).CrossRefGoogle Scholar
  35. 35.
    E. Kavitha, N. Sundaraganesan, and S. Sebastian, Ind. J. Pure Appl. Phys., 48, 20–30 (2010)Google Scholar
  36. 36.
    A. Jayaprakash, V. Arjunan, and S. Mohan, Spectrochim. Acta, A, 81, 620–630 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    J. BevanOtt and J. Boerio-Goates, Chemical Thermodynamics: Principles and Applications, Academic Press, San Diego (2000).Google Scholar
  38. 38.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York (1976).Google Scholar
  39. 39.
    J. M. Semanario, Recent Developments and Applications of Modern Density Functional Theory, 4, Elsevier, The Netherlands (1996).Google Scholar
  40. 40.
    T. Yesilkaynak, G. Binzer, F. Mehmet Emen, U. Florke, N. Kulcu, and H. Arslan, Eur. J. Chem., 1, 1 (2010).CrossRefGoogle Scholar
  41. 41.
    B. Kosar and C. Albayrak, Spectrochim. Acta, A, 78, 96 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Kour
    • 1
  • A. Kumar
    • 1
  • A. Uppal
    • 1
  • Y. Khajuria
    • 1
  • V. K. Singh
    • 1
    Email author
  1. 1.Shri Mata Vaishno Devi University, Faculty of SciencesKatraIndia

Personalised recommendations