Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 685–689 | Cite as

High-Brightness Bactericidal Light Source Based on Spark Discharges in Xenon

  • S. G. KireevEmail author
  • A. I. Kulebiakina
  • S. G. Shashkovskiy
Article
  • 14 Downloads

The radiative characteristics of high-current short-arc pulsed discharges in xenon are studied for working voltages from 0.5 to 2.0 kV, discharge energies from 0.25 to 8.0 J, xenon pressures of 4.0 and 6.5 atm, and interelectrode gaps of 4 and 6 mm. High radiative fluxes are obtained in the spectral range from 200–300 nm corresponding to bactericidal effects, so short-arc xenon lamps can be regarded as promising sources of UV radiation for application in bactericidal devices for various purposes.

Keywords

pulse ultraviolet radiation short-arc lamp brightness brightness temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. B. Aizenberg (Ed.), Handbook of Illumination Engineering [in Russian], Energoatomizdat, Moscow (1983).Google Scholar
  2. 2.
    A. S. Kamrukov, N. P. Kozlov, and M. S. Yalovik, BezopasnostZhiznedeyatelnosti, No. 1, 32–40 (2003).Google Scholar
  3. 3.
    S. V. Gavrish, Svetotekhnika, No. 1, 27–31 (2009).Google Scholar
  4. 4.
    G. A. Kalinchuk, N. A. Polikarpov, Ya. A. Gol′dshtein, and I. V. Goncharenko, Poliklinika, No. 3, 113–117 (2009).Google Scholar
  5. 5.
    S. Simmons, M. Morgan, T. Hopkins, K. Helsabeck, J. Stachowiak, and M. Stibich, J. Infect. Prevent., 14, No. 5, 172–174 (2013).CrossRefGoogle Scholar
  6. 6.
    I. S. Marshak (Ed.), Pulsed Light Sources [in Russian], Energiya, Moscow (1978).Google Scholar
  7. 7.
    D. V. Rybka, E. Kh. Baksht, M. I. Lomaev, V. F. Tarasenko, M. Krishnan, and J. Thomson, Zh. Tekh. Fiz., 75, No. 2, 131–134 (2005).Google Scholar
  8. 8.
    A. S. Kamrukov and A. I. Kulebyakina, Proc. VIII Int. Symp. on Radiation Plasma Dynamics, Izd. NITs "Inzhener," Moscow (2009), pp. 137–142.Google Scholar
  9. 9.
    V. P. Arkhipov, S. G. Arkhipov, M. N. Zharnikov, A. S. Kamrukov, A. V. Plyusnin, K. A. Semenov, Ya. Ya. Khadzhieva, and M. S. Yalovik, Proc. VI Int. Symp. on Radiation Plasma Dynamics, Izd. MGTU im. N. É. Baumana, Moscow (2003), pp. 202–203.Google Scholar
  10. 10.
    M. P. Vanyukov and A. A. Mak, Usp. Fiz. Nauk, 66, No. 2, 301–329 (1958).CrossRefGoogle Scholar
  11. 11.
    U. Yusupaliev, Kratkie Soobshch. Fizike, No. 1, 32–40 (2011).Google Scholar
  12. 12.
    Yu. P. Andreev, R. V. Bailovskaya, and N. A. Voskresenskaya, Physical and Technical Properties of Quartz Glasses for Envelopes of High-intensity Light Sources [in Russian], TsNII "Élektronika," Moscow (1976).Google Scholar
  13. 13.
    S. P. Perov and A. Kh. Khrgian, Current Problems with Atmospheric Ozone [in Russian], Gidrometeoizdat, Leningrad (1980).Google Scholar
  14. 14.
    А. S. Kamrukov, S. G. Kireev, N. P. Kozlov, and S. G. Shashkovskii, Zh. Prikl. Spektrosk., 84, No. 4, 656–663 (2017) [А. S. Kamrukov, S. G. Kireev, N. P. Kozlov, and S. G. Shashkovskii, J. Appl. Spectrosc., 84, 657–663 (2017)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. G. Kireev
    • 1
    Email author
  • A. I. Kulebiakina
    • 1
  • S. G. Shashkovskiy
    • 1
  1. 1.Scientific and Industrial Enterprise “Melitta,” Ltd.MoscowRussia

Personalised recommendations