Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 666–670 | Cite as

Spectral Characteristics of Hydroxyflavones Adsorbed on an Alumina Surface

  • N. A. LipkovskaEmail author
  • V. N. Barvinchenko
Article
  • 15 Downloads

Quercetin and rutin upon adsorption on alumina were found to form colored chelate complexes with alumina surface groups similar to complexes with Al(III) ions in solution. The optical density of the alumina dispersion in the presence of these hydroxyflavones is greatest in neutral media and linearly dependent on their concentration in the initial solution. The conditional molar absorption coefficients of the surface quercetin (εS434 = 4386 g/(mole·cm)) and rutin complexes (εS403 = 5280 g/(mole·cm)) were determined. Highly dispersed alumina can be proposed as a solidphase reagent for the determination of quercetin and rutin in preparations of medicinal plants by a spectrophotometric or visual test method.

Keywords

rutin quercetin alumina spectral properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Andersen and K. R. Markham, Flavonoids. Chemistry, Biochemistry and Applications, Boca Raton CRC Press, New York (2006).Google Scholar
  2. 2.
    A. Wach, K. Pyrzyska, and M. Biesaga, Food Chem., 100, No. 2, 699–704 (2007).CrossRefGoogle Scholar
  3. 3.
    Ya. I. Yashin, V. Yu. Ryzhnev, A. Ya. Yashin, and N. I. Chernousova, Natural Antioxidants. Content in Food Products and Their Effect on Human Health and Aging [in Russian], TransLit, Moscow (2009).Google Scholar
  4. 4.
    Yu. S. Tarakhovskii, Yu. A. Kim. B. S. Abdrasilov, and E. N. Muzafarov, Flavonoids: Biochemistry, Biophysics, Medicine [in Russian], Synchrobook, Pushchino (2013).Google Scholar
  5. 5.
    W. Wang, C. Sun, L. Mao, P. Ma, F. Liu, J. Yang, and Y. Gao, Trends Food Sci. Technol., 56, 21–38 (2016).CrossRefGoogle Scholar
  6. 6.
    C. Chen, J. Zhou, and C. Ji, Life Sci., 87, 333–338 (2010).CrossRefGoogle Scholar
  7. 7.
    E. Rijke, P. Out, W. M. Niessen, F. Ariese, C. Gooijer, and U. A. Brinkman, J. Chromatogr. A, 1112, 31–63 (2006).CrossRefGoogle Scholar
  8. 8.
    S. G. Dmitrienko, V. A. Kudrinskaya, and V. V. Apyari, Zh. Analit. Khim., 67, No. 4, 340–353 (2012).Google Scholar
  9. 9.
    M. Naczk and F. Shahidi, J. Chromatogr. A, 1054, 95–111 (2004).CrossRefGoogle Scholar
  10. 10.
    F. R. P. Rocha, I. M. Raimundo, Jr., and L. S. G. Teixeira, Anal. Lett., 44, 528–559 (2011).CrossRefGoogle Scholar
  11. 11.
    O. A. Zaporozhets, O. A. Krushynska, N. A. Lipkovska, and V. N. Barvinchenko, J. Agric. Food Chem., 52, 21–25 (2004).CrossRefGoogle Scholar
  12. 12.
    O. A. Zaporozhets, O. A. Krushynska, N. A. Lipkovska, and V. M. Barvinchenko, Farmakom, Nos. 1/2 , 51–58 (2006).Google Scholar
  13. 13.
    N. A. Lipkovska, O. A. Zaporozhets, O. A. Krushynska, V. M. Barvinchenko, and O.O. Dovbii, Farmakom, No. 4, 69–74 (2008).Google Scholar
  14. 14.
    A. Pęnkal and K. Pyrzynska, Food Anal. Methods, 7, 1776–1782 (2014).CrossRefGoogle Scholar
  15. 15.
    J. P. Cornard and J. C. Merlin, J. Inorg. Biochem., 92, No. 1, 19–27 (2002).CrossRefGoogle Scholar
  16. 16.
    N. Ya. Bernshtein and Yu. L. Kaminskii, Spectrophotometric Analysis in Organic Chemistry [in Russian], Khimiya, Leningrad (1986).Google Scholar
  17. 17.
    N. A. Lipkovska, V. N. Barvinchenko, T. V. Fedyanina, and A. A. Rugal, Zh. Prikl. Spektrosk., 81, No. 4, 589–593 (2014) [J. Appl. Spectrosc., 81, 644–648 (2014)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chuiko Institute of Surface ChemistryNational Academy of Sciences of UkraineKiev-164Ukraine

Personalised recommendations