Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 623–628 | Cite as

Estimating Joint Cartilage Thickness on an Animal Model ex vivo Using Diffuse Reflectance Spectroscopy

  • A. Sircan-Kucuksayan
  • M. CanpolatEmail author
Article
  • 9 Downloads

A diffuse reflectance visible light spectroscopy method has been developed to estimate bovine cartilage thickness in real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe including two 400-μm diameter fibers with a center-to-center separation of 1.2 mm used to acquire the spectra. A total of four patellae were obtained from bovine just after sacrifice. In the study, ten cattle patella cartilage samples were prepared in a cylindrical shape and thinned by a 200-μm step. Spectra were acquired from the 123 cartilage samples. Cartilage samples were divided into training and validation groups. A correlation between the thickness of the cartilage samples and the absorption spectra was obtained using the data of the training group. The relative thickness of the cartilage was estimated with an average error of 15% in the validation group using the correlation. Diffuse reflectance spectroscopy has the potential to estimate the thickness of cartilage lesions during arthroscopic evaluation of knee cartilages.

Keywords

cartilage thickness reflectance spectroscopy arthroscopy optical fiber probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Cohen, R. J. Foster, and V. C. Mow, J. Orthop. Sport Phys., 28, No. 4, 203–215 (1998).CrossRefGoogle Scholar
  2. 2.
    R. E. Outerbridge, J. Bone Joint Surg., B, 43, No. 4, 752–757 (1961).CrossRefGoogle Scholar
  3. 3.
    G. Spahn, H. M. Klinger, M. Baums, U. Pinkepank, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 131, No. 3, 377–381 (2011).CrossRefGoogle Scholar
  4. 4.
    G. Spahn, H. M. Klinger, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 129, No. 8, 1117–1121 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Sircan-Kucuksayan, M. Uyuklu, and M. Canpolat, Physiol. Meas., 36, No. 12, 2461–2469 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Turhan, N. Yaprak, A. Sircan-Kucuksayan, I. Ozbudak, A. Bostanci, and A. Derin, Laryngoscope, 127, No. 3, 611–615 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Sircan-Kucuksayan, T. Denkceken, and M. Canpolat, J. Biomed. Opt., 20, 115007 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    G. Spaln, H. Plettenberg, H. Nagel, E. Kahl, H. M. Klinger, and T. Muckley, Med. Eng. Phys., 30, No. 3, 285–292 (2008).CrossRefGoogle Scholar
  9. 9.
    D. Baykal, O. Irrechukwu, P. C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko, Appl. Spectrosc., 64, No. 10, 1160–1166 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    I. Afara, I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede, Osteoarthr. Cartilage, 20, No. 11, 1367–1373 (2012).CrossRefGoogle Scholar
  11. 11.
    D. K. Kasaragod, Z. H. Lu, J. Jacobs, and S. J. Matcher, Biomed. Opt. Express, 3, No. 3, 378–387 (2012).CrossRefGoogle Scholar
  12. 12.
    N. S. J. Lim, Z. Hamed, C. H. Yeow, C. Chan, and Z. Huang, J. Biomed. Opt., 16, 017003 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    G. Spahn, G. Felmet, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 133, No. 7, 997–1002 (2013).CrossRefGoogle Scholar
  14. 14.
    G. Spahn, H. Plettenberg, M. Hoffmann, H. T. Klemm, C. Brochhausen-Delius, and G. O. Hofmann, Arch. Orthop. Traum. Surg., 137, No. 6, 837–844 (2017).CrossRefGoogle Scholar
  15. 15.
    G. O. Hofmann, J. Marticke, R. Grossstück, M. Hoffmann, M. Lange, and H. K. W. Plettenberg, Pathophysiology, 17, 1–8 (2010).CrossRefGoogle Scholar
  16. 16.
    P. A. Oberg, T. Sundqvist, and A. Johansson, Med. Biol. Eng. Comput., 42, No. 1, 3–8 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Canpolat, T. Denkceken, C. Karagol, and A. T. Aydin, Proc. SPIE, 7890 (2011).Google Scholar
  18. 18.
    J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, Appl. Opt., 37, No. 16, 3586–3593 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    S. Koo, G. E. Gold, and T. P. Andriacchi, Osteoarthr. Cartilage, 13, No. 9, 782–789 (2005).CrossRefGoogle Scholar
  20. 20.
    F. Eckstein, A. Gavazzeni, H. Sittek, M. Haubner, A. Losch, and S. Milz, Magnet. Reson. Med., 36, No. 2, 256–265 (1996).CrossRefGoogle Scholar
  21. 21.
    D. Krpan and W. Kullich, Clin. Cases Miner. Bone Metab., 14, No. 2, 235–238 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Alanya Alaaddin Keykubat University, Department of Biophysics, Faculty of MedicineAntalyaTurkey
  2. 2.Akdeniz University, Biomedical Optics Research Unit, Department of Biophysics, Faculty of MedicineAntalyaTurkey

Personalised recommendations