Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 597–605 | Cite as

Photoluminescence Spectra of the 580-nm Center in Irradiated Diamonds

  • A. A. KhomichEmail author
  • R. A. Khmelnitskii
  • O. N. Poklonskaya
  • A. A. Averin
  • S. N. Bokova-Sirosh
  • N. A. Poklonskii
  • V. G. Ralchenko
  • A. V. Khomich
Article
  • 31 Downloads

The formation mechanisms of the zero-phonon line optical center at 580 nm (H19 center) in photoluminescence spectra of irradiated natural diamonds and those deposited from the vapor phase were studied after their high-temperature vacuum annealing. The photoluminescence band intensity of the H19 center was shown to increase exponentially as the annealing temperature increased. Temperature dependences of photoluminescence spectra and local mechanical stress effects on the position and full width at half-height of the 580-nm zero-phonon line optical peak led to the conclusion that the H19 optical center was a complex intrinsic vacancy defect.

Keywords

diamond photoluminescence zero-phonon line neutron irradiation ion implantation defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Loncar, and M. D. Lukin, Science, 354, No. 6314, 847–850 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    S. Johnson, P. R. Dolan, and J. M. Smith, Prog. Quant. Electron., 55, 129–165 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    E. Ekimov, M. V. Kondrin, V. S. Krivobok, A. A. Khomich, I. I. Vlasov, R. A. Khmelnitskiy, T. Iwasaki, and M. Hatano, Diamond Relat. Mater., 93, 75–83 (2019).ADSCrossRefGoogle Scholar
  4. 4.
    T. Luhmann, N. Raatz, R. John, M. Lesik, J. Rodiger, M. Portail, D. Wildanger, F. Kleissler, K. Nordlund, A. Zaitsev, J.-F. Roch, A. Tallaire, J. Meijer, and S. Pezzagna, J. Phys. D: Appl. Phys., 51, No. 48, 483002 (2018).CrossRefGoogle Scholar
  5. 5.
    B. Dischler, Handbook of Spectral Lines in Diamond. Vol. 1. Tables and Interpretations, New York, Springer (2012), pp. 14–64.CrossRefGoogle Scholar
  6. 6.
    A. V. Khomich, R. A. Khmel′nitskii, N. A. Poklonskii, N. M. Lapchuk, A. A. Khomich, V. A. Dravin, O. N. Poklonskaya, E. E. Ashkinazi, I. I. Vlasov, E. V. Zavedeev, and V. G. Ral′chenko, Zh. Prikl. Spektrosk., 79, No. 4, 615–624 (2012) [A. V. Khomich, R. A. Khmelnitsky, N. A. Poklonski, N. M. Lapchuk, A. A. Khomich, V. A. Dravin, O. N. Poklonskaya, E. E. Ashkinazi, I. I. Vlasov, E. V. Zavedeev, and V. G. Ralchenko, J. Appl. Spectrosc., 79, No. 4, 600–609 (2012)].Google Scholar
  7. 7.
    A. A. Khomich, V. G. Ral′chenko, A. V. Khomich, I. I. Vlasov, R. A. Khmel′nitskii, and A. E. Kar′kin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 56, No. 5, 27–31 (2013).Google Scholar
  8. 8.
    A. V. Khomich, A. E. Kar′kin, V. G. Ral′chenko, I. I. Vlasov, A. A. Khomich, N. M. Lapchuk, O. N. Poklonskaya, R. A. Khmel′nitskii, A. A. Averin, and A. A. Shiryaev, in: Proc. 9th Int. Confrence "Interaction of Radiation with Matter" [in Russian], September 20–22, 2011, Minsk, Izd. Tsentr BGU, Minsk (2011), pp. 180–182.Google Scholar
  9. 9.
    C. D. Clark, R. W. Ditchburn, and H. B. Dyer, Proc. R. Soc. London, Ser. A, 234, 363–381 (1956).ADSCrossRefGoogle Scholar
  10. 10.
    A. M. Zaitsev, Optical Properties of Diamond. A Data Handbook, Springer, Berlin (2001), p. 262.CrossRefGoogle Scholar
  11. 11.
    A. A. Khomich, A. A. Averin, O. N. Poklonskaya, A. I. Kovalev, M. V. Kozlova, R. A. Khmel′nitskii, V. G. Ral′chenko, N. A. Poklonskii, and A. V. Khomich, in: Proc. 12th Int. Conf. "Interaction of Radiation with Matter" [in Russian], September 19–22, 2017, Minsk, Izd. Tsentr BGU, Minsk (2017), pp. 75–77.Google Scholar
  12. 12.
    J. Forneris, P. Traina, D. G. Monticone, G. Amato, L. Boarino, G. Brida, I. P. Degiovanni, E. Enrico, E. Moreva, V. Grilj, N. Skukan, M. Jaksic, M. Genovese, and P. Olivero, Sci. Rep., 5, 15901 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    J. Forneris, S. D. Tchernij, A. Tengattini, E. Enrico, V. Grilj, N. Skukan, G. Amato, L. Boarino, M. Jaksic, and P. Olivero, Carbon, 113, 76–86 (2017).CrossRefGoogle Scholar
  14. 14.
    K. Wang, J. Steeds, and Z. Li, Diamond Relat. Mater., 25, 29–33 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    J. W. Steeds, Nucl. Instrum. Methods Phys. Res., Sect. B, 269, 1702–1706 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    S. V. Nistor, M. Stefan, V. Ralchenko, A. Khomich, and D. Schoemaker, J. Appl. Phys., 87, 8741–8746 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Khomich, R. A. Khmel′nitskii, X. J. Hu, A. A. Khomich, A. F. Popovich, I. I. Vlasov, V. A. Dravin, Y. G. Chen, A. E. Kar′kin, and V. G. Ral′chenko, Zh. Prikl. Spektrosk., 80, No. 5, 719–726 (2013) [A. V. Khomich, R. A. Khmelnitskii, X. J. Hu, A. A. Khomich, A. F. Popovich, I. I. Vlasov, V. A. Dravin, Y. G. Chen, A. E. Karkin, and V. G. Ralchenko, J. Appl. Spectrosc., 80, 707–714 (2013)].Google Scholar
  18. 18.
    A. Bolshakov, V. Ralchenko, V. Sedov, A. Khomich, I. Vlasov, A. Khomich, N. Trofimov, V. Krivobok, S. Nikolaev, R. Khmelnitskii, and V. Saraykin, Phys. Status Solidi A, 212, 2525–2532 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    А. V. Khomich, V. G. Ralchenko, A. V. Vlasov, R. A. Khmelnitskiy, I. I. Vlasov, and V. I. Konov, Diamond Relat. Mater., 10, 546–551 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Gippius, A. M. Zaitsev, and V. S. Vavilov, Fiz. Tekh. Poluprovodn., 16, 404–411 (1982) [A. A. Gippius, A. M. Zaitsev, and V. S. Vavilov, Sov. Phys. Semicond., 16, 256–261 (1982)].Google Scholar
  21. 21.
    А. А. Gippius, R. A. Khmelnitskiy, V. A. Dravin, and A. V. Khomich, Diamond Relat. Mater., 12, 538–541 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    K. Iakoubovskii, G. J. Adriaenssens, and M. Nesladek, J. Phys.: Condens. Matter, 12, 189–199 (2000).ADSGoogle Scholar
  23. 23.
    R. U. A. Khan, P. M. Martineau, B. L. Cann, M. E. Newton, and D. J. Twitchen, J. Phys.: Condens. Matter, 21, 364214 (2009).Google Scholar
  24. 24.
    S. Onoda, K. Tatsumi, M. Haruyama, T. Teraji, J. Isoya, W. Kada, T. Ohshima, and O. Hanaizumi, Phys. Status Solidi A, 214, 1700160 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    G. Davies and A. T. Collins, Diamond Relat. Mater., 2, 80–86 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    E. Anastassakis, J. Appl. Phys., 86, 249–258 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    I. I. Vlasov, V. G. Ralchenko, E. D. Obraztsova, A. A. Smolin, and V. I. Konov, Appl. Phys. Lett., 71, 1789–1791 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    L. Nistor, V. Ralchenko, I. Vlasov, A. Khomich, R. Khmelnitskiy, P. Potapov, and J. Van Landuyt, Phys. Status Solidi A, 186, 207–214 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    V. Ralchenko, L. Nistor, E. Pleuler, A. Khomich, I. Vlasov, and R. Khmelnitskii, Diamond Relat. Mater., 12, 1964–1970 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    A. A. Khomich, A. N. Dzeraviaha, O. N. Poklonskaya, A. V. Khomich, R. A. Khmelnitsky, N. A. Poklonski, and V. G. Ralchenko, J. Phys.: Conf. Ser., 1135, 012019 (2018).Google Scholar
  31. 31.
    K. K. Rebane, Impurity Spectra of Solids: Elementary Theory of Vibrational Structure, Plenum Press, New York, London (1970), p. 45.Google Scholar
  32. 32.
    V. Hizhnyakov, H. Kaasik, and I. Sildos, Phys. Status Solidi B, 234, 644–653 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    M. W. Doherty, V. M. Acosta, A. Jarmola, M. S. J. Barson, N. B. Manson, D. Budker, and L. C. L. Hollenberg, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 041201(R) (2014).ADSCrossRefGoogle Scholar
  34. 34.
    G. Davies, in: CVD Diamond for Electronic Devices and Sensors, R. S. Sussmann (Ed.), Wiley, Chichester (2009), pp. 3–28.Google Scholar
  35. 35.
    A. M. Zaitsev, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 12909–12922 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    W. Windl, P. Pavone, K. Karch, O. Schutt, D. Strauch, P. Giannozzi, and S. Baroni, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 3164–3170 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    P. Nemeth, L. A. J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, and P. R. Buseck, Nat. Commun., 5, 5447 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    S. M. Pimenov, A. A. Khomich, I. I. Vlasov, E. V. Zavedeev, A. V. Khomich, B. Neuenschwander, B. Jaggi, and V. Romano, Appl. Phys. A: Mater. Sci. Process., 116, 545–554 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    O. N. Poklonskaya, S. A. Vyrko, A. A. Khomich, A. A. Averin, A. V. Khomich, R. A. Khmel′nitskii, and N. A. Poklonskii, Zh. Prikl. Spektrosk., 81, No. 6, 879–887 (2014) [O. N. Poklonskaya, S. A. Vyrko, A. A. Khomich, A. A. Averin, A. V. Khomich, R. A. Khmelnitsky, and N. A. Poklonski, J. Appl. Spectrosc., 81, No. 6, 969–977 (2015)].Google Scholar
  40. 40.
    R. Sandstrom, L. Ke, A. Martin, Z. Wang, M. Kianinia, B. Green, W. Gao, and I. Aharonovich, Opt. Commun., 411, 182–186 (2018).ADSCrossRefGoogle Scholar
  41. 41.
    V. D. Tkachev, A. M. Zaitsev, and V. V. Tkachev, Phys. Status Solidi B, 129, 129–133 (1985).ADSCrossRefGoogle Scholar
  42. 42.
    M. Wang, G. Shi, J. C. C. Yuan, W. Han, and Q. Bai, J. Spectrosc., 2018, 8153941 (2018).CrossRefGoogle Scholar
  43. 43.
    Diamond (C), EPR spectra W1–W44, in: Impurities and Defects in Group IV Elements, IV–IV and III–V Compounds. Part a: Group IV Elements, O. Madelung, U. Rossler, and M. Schulz (Eds.), Springer, Berlin (2002), pp. 1–22.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Khomich
    • 1
    Email author
  • R. A. Khmelnitskii
    • 2
  • O. N. Poklonskaya
    • 3
  • A. A. Averin
    • 4
  • S. N. Bokova-Sirosh
    • 5
  • N. A. Poklonskii
    • 3
  • V. G. Ralchenko
    • 5
    • 6
  • A. V. Khomich
    • 1
  1. 1.V. A. Kotelnikov Institute of Radio Engineering and Electronics, Fryazino BranchRussian Academy of SciencesMoscow RegionRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Belarusian State UniversityMinskBelarus
  4. 4.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  5. 5.A. M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  6. 6.Harbin Institute of TechnologyHarbinChina

Personalised recommendations