Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 572–577 | Cite as

Complex Defects in Mg-Doped Lithium Niobate Crystals Over a Wide Concentration Range and Their Manifestation in IR Absorption Spectra in the OH Stretching Vibration Region

  • N. V. SidorovEmail author
  • L. A. Bobreva
  • M. N. Palatnikov
Article
  • 8 Downloads

Structural defects of nominally pure congruent and stoichiometric LiNbO3 crystals and a series of congruent crystals doped with 0.91–5.91 mol% MgO were compared and comprised two concentration thresholds at ~3.0 and ~5.5 mol% MgO. The main band parameters of OH stretching vibrations in IR absorption spectra (frequency, half-width, intensity) displayed abrupt changes near the concentration threshold at 5.5 mol% MgO. The OH stretching-vibration band shifted to higher frequency by ~50 cm–1 because of the formation of (MgLi)+–(MgNb)3––OHcomplexes upon reaching the second Mg concentration threshold.

Keywords

single crystal lithium niobate doping complex and point defects photorefractive effect OH stretching vibrations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Volk and M. Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin, Springer (2008).CrossRefGoogle Scholar
  2. 2.
    N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, and Polaritons [in Russian], Nauka, Moscow (2003).Google Scholar
  3. 3.
    M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, and I. V. Biryukova, Fundamental Aspects of the Technology of Highly Doped Lithium Niobate Crystals [in Russian], Izd. KNTs RAN, Apatity (2017).Google Scholar
  4. 4.
    V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J. Melkonian, and A. Godard, Opt. Express, 21, No. 23, 28886–28891 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, and E. Dieguez, Adv. Phys., 45, No. 5, 349–392 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    K. Lengyel, L. Kovacs, A. Peter, K. Polgar, G. Corradi, A. Baraldi, and R. Capelletti, Appl. Phys. Lett., 96, 1–3 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. Cochez, M. Ferriol, P. Bourson, and M. Aillerie, Opt. Mater., 21, 775–781 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, J. Phys.: Condens. Matter, 11, 2139–2143 (1999).ADSGoogle Scholar
  9. 9.
    K. Lengyel, L. Kovacs, A. Peter, K. Polgar, and G. Corradi, Appl. Phys. B: Lasers Opt., 87, 317–322 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Blistanov, V. M. Lyubchenko, and A. N. Goryunova, Kristallografiya, 43, No. 1, 86–92 (1998).ADSGoogle Scholar
  11. 11.
    M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, P. G. Chufyrev, and V. T. Kalinnikov, Perspekt. Mater., 4, 48–54 (2003).Google Scholar
  12. 12.
    X.-Q. Feng and B. T. Tong, J. Phys.: Condens. Matter, 5, 2423–2430 (1993).ADSGoogle Scholar
  13. 13.
    J. Liu, W. Zhang, and G. Zhang, Phys. Status Solidi A, 156, 285–291 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Sidorov, M. N. Palatnikov, L. A. Bobreva, and N. N. Novikova, Neorg. Mater., 53, No. 7, 727–731 (2017) [N. V. Sidorov, M. N. Palatnikov, L. A. Bobreva, and N. N. Novikova, Inorg. Mater., 53, 713–717 (2017)].Google Scholar
  15. 15.
    N. V. Sidorov, L. A. Bobreva, and M. N. Palatnikov, Opt. Spektrosk., 123, No. 2, 246–252 (2017) [N. V. Sidorov, L. A. Bobreva, and M. N. Palatnikov, Opt. Spectrosc., 123, 258–263 (2017)].Google Scholar
  16. 16.
    N. V. Sidorov, N. A. Teplyakova, M. N. Palatnikov, and L. A. Bobreva, Zh. Prikl. Spektrosk., 84, No. 4, 521–526 (2017) [N. V. Sidorov, N. A. Teplyakova, M. N. Palatnikov, and L. A. Bobreva, J. Appl. Spectrosc., 84, 549–554 (2017)].Google Scholar
  17. 17.
    M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Ya. Shur, J. Cryst. Growth, 291, 390–397 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    K. Lеngyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgar, Appl. Phys. Rev., No. 2, 040601 (2015).Google Scholar
  19. 19.
    S. V. Evdokimov and A. V. Yatsenko, Kristallografi ya, 48, No. 4, 594–598 (2003) [S. V. Yevdokimov and A. V. Yatsenko, Crystallogr. Rep., 48, No. 4, 542–546 (2003)].Google Scholar
  20. 20.
    N. Zotov, H. Boysen, and F. Frey, J. Phys. Chem. Solids, 55, No. 2, 145–152 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    H. J. Donnerberg, S. M. Tomlinson, and C. R. A. Catlow, J. Phys. Chem. Solids, 52, No. 1, 201–210 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, J. Solid State Chem., 101, 340–352 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    A. Grone and S. Kapphan, J. Phys. Chem. Solids, 56, 687–701 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    K. Polgar, A. Peter, L. Kovacs, G. Corradi, and Z. Szaller, J. Cryst. Growth, 177, 211–216 (1997).ADSCrossRefGoogle Scholar
  25. 25.
    J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, Solid State Commun., 12, 351–354 (1973).ADSCrossRefGoogle Scholar
  26. 26.
    L. Arizmendi, J. Ambite Emilio, and L. Plaza Jose, Opt. Mater., 35, 2411–2413 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    B. C. Grabmaier and F. Otto, J. Cryst. Growth, 79, 682–688 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Sidorov
    • 1
    Email author
  • L. A. Bobreva
    • 1
  • M. N. Palatnikov
    • 1
  1. 1.I. V. Tananaev Institute of the Chemistry and Technology of Rare Elements and Mineral Raw Materials, Subdivision of Kola Science CenterRussian Academy of SciencesApatityRussia

Personalised recommendations