Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 561–566 | Cite as

Stimulated Resonance Raman Scattering Considering Radiation Impacts on Energy-Level Populations

  • P. A. ApanasevichEmail author
  • G. I. Timofeeva

A system of equations describing stimulated resonance and spontaneous Raman scattering considering radiation impacts on scattering-center level populations was derived. The contribution of the resonant transition to the Raman gain coefficient was analyzed in the simplest case as a function of the resonance mismatch.


resonance Raman scattering stimulated Raman scattering radiation absorption level population 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. Albrecht, Chem. Phys., 34, 1476–1481 (1961).ADSGoogle Scholar
  2. 2.
    P. A. Apanasevich and D. N. Ordobaev, Zh. Prikl. Spektrosk., 4, 134–141 (1966) [P. A. Apanasevich and D. N. Ordobaev, J. Appl. Spectrosc., 4, 102–107 (1966)].Google Scholar
  3. 3.
    D. I. Huber, Phys. Rev.131, 3409–3415 (1970).CrossRefGoogle Scholar
  4. 4.
    A. C. Albrecht and M. C. Hutley, J. Chem. Phys., 55, 4438–4443 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    Ya. S. Bobovich and A. V. Bortkevich, Kvantovaya Élektron. (Moscow), 4, No. 3, 485–512 (1977).ADSGoogle Scholar
  6. 6.
    D. P. Strommen and K. J. Nakamoto, Chem. Educ., 54, 474–478 (1977).CrossRefGoogle Scholar
  7. 7.
    Yu T. Mazurenko, Opt. Spektrosk., 56, 653–658 (1984).Google Scholar
  8. 8.
    S. A. Akhmanov, K. N. Drabovich, and A. P. Sukhorukov, Zh. Éksp. Teor. Fiz., 59, No. 2, 489–496 (1970).Google Scholar
  9. 9.
    P. A. Apanasevich, V. V. Kvach, V. P. Kozich, and V. A. Orlovich, "High-Efficiency YAG:Nd 3+-Laser with an Unstable Cavity and Polarized Inlet Slit" [in Russian], Preprint No. 365, Inst. Fiz. Akad. Nauk BSSR, Minsk (1985).Google Scholar
  10. 10.
    S. A. Akhmanov and I. I. Koroteev, Nonlinear Optics Methods in Light-Scattering Spectroscopy [in Russian], Nauka, Moscow (1991).Google Scholar
  11. 11.
    S. G. Kruglik, P. A. Apanasevich, V. S. Chirvony, and V. A. Orlovich, J. Phys. Chem., 99, No. 10, 2978–2995 (1995).CrossRefGoogle Scholar
  12. 12.
    S.-Y. Lee, D. Zhang, D. W. McCamant, P. Kukura, and R. A. Mathies, J. Chem. Phys., 121, 3632–3637 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    A. M. Kelley, J. Phys. Chem. A, 112, 11975–11991 (2008).CrossRefGoogle Scholar
  14. 14.
    P. A. Apanasevich, Theoretical Basis for the Interaction of Light with Matter [in Russian], Nauka i Tekhnika, Minsk (1977).Google Scholar
  15. 15.
    I. R. Shen, Principles of Nonlinear Optics [in Russian], Nauka, Moscow (1989).Google Scholar
  16. 16.
    R. W. Boyd, Nonlinear Optics, Academic, San Diego (2003).Google Scholar
  17. 17.
    P. A. Apanasevich and G. I. Timofeeva, Zh. Prikl. Spektrosk., 85, No. 2, 231–235 (2018) [P. A. Apanasevich and G. I. Timofeeva, J. Appl. Spectrosc., 85, 250–254 (2018)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations