Advertisement

Study of the Interaction of Quercetin and Taxifolin with β-Lactoglobulin by Fluorescence Spectroscopy and Molecular Dynamics Simulation

  • Fatemeh S. Mohseni-ShahriEmail author
Article
  • 3 Downloads

The interaction between quercetin and taxifolin with β-lactoglobulin (BLG) was investigated via various methods, including fluorescence spectroscopy, molecular docking and molecular dynamics (MD) simulation. The results have demonstrated that quercetin binds BLG with an affinity higher than that of taxifolin, which is attributed to the nonplanar C-ring and steric hindrance effect in taxifolin. The synchronous fluorescence spectra shows that quercetin and taxifolin do not induce conformational changes of BLG. Molecular docking studies have demonstrated that several amino acids are involved in stabilizing the interaction. Analysis of the MD simulation trajectories shows that the root mean square deviation (RMSD) of various systems reaches equilibrium. Time evolution of the radius of gyration shows as well that BLG and BLG-flavonoid complexes are stable within 5 ns. In addition, analyzing the RMS fluctuations, one can suggest that the structure of the ligand binding site remains rigid during the simulation. The secondary structure of BLG is preserved upon interaction with these flavonoids.

Keywords

β-lactoglobulin flavonoid fluorescence quenching molecular dynamics simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Flower, A. C. North, and C. E. Sansom, Biochim. Biophys. Acta, 1482, 9–24 (2000).CrossRefGoogle Scholar
  2. 2.
    S. Schlehuber and A. Skerra, Drug Discov. Today, 10, 23–33 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Petrovska, D. Jonkus, J. Zagorska, and I. Ciprovica, Res. Rural Dev., 2, 74–80 (2017).Google Scholar
  4. 4.
    J. C. Ioannou, A. M. Donald , and R. H. Tromp, Food Hydrocolloid, 46, 216–225 (2015).CrossRefGoogle Scholar
  5. 5.
    S. A. Forrest, R. Y. Yada, and D. Rousseau, J. Agric. Food Chem., 53, 8003–8009 (2005).CrossRefGoogle Scholar
  6. 6.
    E. Reboul, Nutrients, 5, 3563–3581 (2013).CrossRefGoogle Scholar
  7. 7.
    S. L. Maux, S. Bouhallab, L. Giblin, A. Brodkorb, and T. Croguennec, Dairy Sci Technol., 94, 409–426 (2014).CrossRefGoogle Scholar
  8. 8.
    T. Lefèvre and M. Subirade, Food Hydrocolloids, 15, 365–376 (2001).CrossRefGoogle Scholar
  9. 9.
    M. Sahihi, Y. Ghayeb, and A. K. Bordbar, Spectroscopy, 27, 27–34 (2012).CrossRefGoogle Scholar
  10. 10.
    L. Liang, H.A. Tajmir-Riahi, and M. Subirade, Biomacromolecules, 9, 50–56 (2008).CrossRefGoogle Scholar
  11. 11.
    L. Liang and M. Subirade, J. Phys. Chem. B, 114, 6707–6712 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Mohammadi and M. Moeeni, Mater. Sci. Eng. C, 50, 358–366 (2015).CrossRefGoogle Scholar
  13. 13.
    L. A. Weston and U. Mathesius, J. Chem. Ecol., 39, 283–297 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Massi, O. Bortolini, D. Ragno, T. Bernardi, G. Sacchetti, M. Tacchini, and C. D. Risi, Molecules, 22, 1270–1297 (2017).CrossRefGoogle Scholar
  15. 15.
    L. G. Costa, J. M. Garrick, P. J. Roquè, and C. Pellacani, Oxid. Med. Cell. Longev., 2016, 1–10 (2016).Google Scholar
  16. 16.
    F. S. Mohseni-Shahri, M. R. Housaindokht, M. R. Bozorgmehr, and A. A. Moosavi-Movahedi, Can. J. Chem., 94, 458–469 (2016).CrossRefGoogle Scholar
  17. 17.
    M. C. Bohin, J. P. Vincken, H. T. W. M. Van der Hijden, and H. Gruppen, J. Agric. Food Chem., 60, 4136–4143 (2012).CrossRefGoogle Scholar
  18. 18.
    J. Essemine, I. Hasni, R. Carpentier, T. J. Thomas, and H. A. Tajmir-Riahi, Int. J. Biol. Macromol., 49, 201–209 (2011).CrossRefGoogle Scholar
  19. 19.
    M. A. Thompson, ArgusLab 40, Planaria Software LLC, Seattle; http://www. ArgusLabcomGoogle Scholar
  20. 20.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, and S. Su, J. Comput. Chem., 14, 1347–1363 (1993).CrossRefGoogle Scholar
  21. 21.
    H. J. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun., 91, 43–56 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    A. W. SchuÈttelkopf and D. M. Van Aalten, Acta Crystallogr. D, 60, 1355–1363 (2004).CrossRefGoogle Scholar
  23. 23.
    H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunstetren, and J. Hermans, Intermolecular Forces, Interaction Models for Water in Relation to Protein Hydration, Reidel Publishing, Dordrecht, The Netherlands (1981).Google Scholar
  24. 24.
    H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys., 81, 3684–3690 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    C. Danciulescu, B. Nick, and F. J. Wortmann, Biomacromolecules, 5, 2165–2175 (2004).CrossRefGoogle Scholar
  26. 26.
    M. R. Eftink and C. A. Ghiron, Biochemistry, 15, 672–680 (1976).CrossRefGoogle Scholar
  27. 27.
    M. Bhattacharyya, U. Chaudhuri, and R. K. Poddar, Biochem. Biophys. Res. Commun., 167, 1146–1153 (1990).CrossRefGoogle Scholar
  28. 28.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, University of Maryland School of Medicine, 3rd ed., Springer, New York (2006).CrossRefGoogle Scholar
  29. 29.
    C. Kanakis, P. Tarantilis, M. Polissiou, and H. A. Tajmir-Riahi, J. Biomol. Struct. Dyn., 31, 1455–1466 (2012).CrossRefGoogle Scholar
  30. 30.
    N. Tayeh, T. Rungassamy, and J. R. Albani, J. Pharm. Biomed. Anal., 50, 107–116 (2009).CrossRefGoogle Scholar
  31. 31.
    J. R. Lackowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 111–150 (1983).CrossRefGoogle Scholar
  32. 32.
    A. Mallick, S. Maiti, B. Haldar, P. Purkayastha, and N. Chattopadhyaya, Chem. Phys. Lett., 371, 688–693 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    P. Bourassa, S. Dubeau, G. M. Maharvi, A. H. Fauq, T. Thomas, and H. A. Tajmir-Riahi, Biochimie, 93, 1089–1101 (2011).CrossRefGoogle Scholar
  34. 34.
    F. Moeinpour, F. S. Mohseni-Shahri, B. Malaekeh-Nikouei, and H. Nassirli, Chem. Biol. Interact., 257, 4–13 (2016).CrossRefGoogle Scholar
  35. 35.
    S. Deepa and A. K. Mishra, J. Pharm. Biomed. Anal., 38, 556–563 (2005).CrossRefGoogle Scholar
  36. 36.
    J. Kang, Y. Liu, and M. Xie, Biochim. Biophys. Acta, 1674, 205–214 (2004).CrossRefGoogle Scholar
  37. 37.
    Y. Q. Wang, H. M. Zhang, G. C. Zhang, Q. H. Zhou, Z. H. Fei, Z. T. Liu, and Z. X. Li, J. Mol. Struct., 886, 77–84 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    S. Roufi k, S. F. Gauthier, X. J. Leng, and S. L. Turgeon, Biomacromolecules, 7, 419–426 (2006).CrossRefGoogle Scholar
  39. 39.
    M. Sahihi, Z. Heidari-Koholi, and A. K. Bordbar, J. Macromol. Sci. B: Phys., 51, 2311–2323 (2015).CrossRefGoogle Scholar
  40. 40.
    D. Renard, Small Angle Neutron Scattering Study оf Protein-Polysaccharide Mixtures Undershear, Dissertation thesis Universit´ e de Nantes, France (1994).Google Scholar
  41. 41.
    L. H. Riihimäki, M. J. Vainio, J. M. Heikura, K. H. Valkonen, V. T. Virtanen, and P. M. Vuorela, J. Agric. Food Chem., 56, 7721–7729 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Bandar Abbas Branch, Islamic Azad UniversityBandar AbbasIran

Personalised recommendations