Advertisement

FT-IR, Raman, NMR, and DFT, TD-DFT/B3LYP Investigations of 1-(Benzyloxy)Urea

  • N. ÖztürkEmail author
  • H. GökceEmail author
Article
  • 11 Downloads

The structural, geometric, spectroscopic, and electronic properties of the 1-(benzyloxy)urea (C8H10N2O2) molecule were investigated using experimental and computational methods. The experimental studies were performed via FT-IR, Raman, and NMR spectroscopies for the determination of vibrational and magnetic properties of the title compound. The molecular geometry optimization, vibrational wavenumbers, proton and 13C NMR chemical shifts (in DMSO), HOMO–LUMO analyses, and UV-Vis spectral parameters (in DMSO) for the title molecule were computed with the DFT/B3LYP method at the 6-311++G(2d,2p) basis set. The assignments of harmonic vibrational wavenumbers were computed using the VEDA 4 software program in terms of potential energy distribution (PED). The HOMO–LUMO and UV-Vis analyses were used to determine intramolecular charge transfer and electronic transitions in the title molecule. The experimental values of vibrational frequencies and NMR chemical shifts are in a good harmony with the computed values.

Keywords

1-(benzyloxy)urea vibrational spectroscopy NMR chemical shift DFT/B3LYP computation HOMO-LUMO and UV-Vis analyses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Navarra and P. Preziosi, Crit. Rev. Oncol./Hematol., 29, 249–255 (1999).CrossRefGoogle Scholar
  2. 2.
    N. Saban and M. Bujak, Cancer Chemother. Pharmacol., 64, 213–221 (2009).CrossRefGoogle Scholar
  3. 3.
    R. Hilf, C. Bell, I. Michel, and J. J. Freeman, A. Borman, Cancer Res., 26, 2286–2291 (1966).Google Scholar
  4. 4.
    B. Chabner and P. Calabresi, Chemotherapy of Neoplastic Disease, The Pharmacological Basis of Therapeutics, 10th ed., McGraw-Hill, New York, 1388–1445 (2001).Google Scholar
  5. 5.
    S. Hardjono, S. Siswodihardjo, P. Pramono, and W. Darmanto, Chem. Chem. Technol., 11, No. 1, 19–24 (2017).CrossRefGoogle Scholar
  6. 6.
    Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT (2009).Google Scholar
  7. 7.
    R. Dennington, T. Keith, and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS (2009).Google Scholar
  8. 8.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    X. Mai, H.-Y. Xia, Y.-S. Cao, X.-S. Lu, and Y.-J. Liao, Z. Kristallogr. NCS, 224, 547–548 (2009).Google Scholar
  11. 11.
    X. Mai, X. Lu, H. Xia, Y. Cao, Y. Liao, and X. Lv, Chem. Parm. Bull., 58, No. 1, 94–97 (2010).CrossRefGoogle Scholar
  12. 12.
    J. M. Alia and H. G. M. Edwards, J. Phys. Chem. A, 109, 7977–7987 (2005).CrossRefGoogle Scholar
  13. 13.
    M. H. Jamr'oz, Vibrational Energy Distribution Analysis VEDA4 (Warsaw, 2004).Google Scholar
  14. 14.
    S. Miertus, E. Scrocco, and J. Tomasi, J. Chem. Phys., 55, 117–129 (1981).Google Scholar
  15. 15.
    F. London, J. Phys. Radium, 8, 397–409 (1937).CrossRefGoogle Scholar
  16. 16.
    R. Ditchfield, Mol. Phys., 27, 789–807 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    K. Wolinski, J. F. Himton, and P. Pulay, J. Am. Chem. Soc., 112, 8251–8260 (1990).CrossRefGoogle Scholar
  18. 18.
    E. Runge and E. K. U. Gross, Phys. Rev. Lett., 52, 997–1000 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    X. Mai, H.-Y. Xia, Y.-S. Cao, W. Tong, and G.-G. Tu, Acta Crystallogr., E65, o2983 (2009).Google Scholar
  20. 20.
    X. Mai, H.-Y. Xia, Y.-S. Cao, X.-S. Lu, and X.-N. Fang, Acta Crystallogr., E65, o442 (2009).Google Scholar
  21. 21.
    National Institute of Advanced Industrial Science and Technology (AIST), Spectral Database for Organic Compounds, SDBS; http://sdbs.db.aist.go.jp Cited September 30, 2017.
  22. 22.
    N. B. Colthup, L. H. Daly, and E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1964).Google Scholar
  23. 23.
    H. Gökce, S. Bahçeli, Spectrochim. Acta, Pt. A, 133, 741–751 (2014).CrossRefGoogle Scholar
  24. 24.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules, 3rd ed., Wiley, New York (1975).CrossRefGoogle Scholar
  25. 25.
    R. M. Silverstein, F. X. Webster, Spectroscopic Identification of Organic Compound, 6nd ed., John Willey & Sons, New York (1998).Google Scholar
  26. 26.
    H. Buyukuslu, M. Akdogan, G. Yildirim, and C. Parlak, Spectrochim. Acta, A, 75, 1362–1369 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction to Spectroscopy, Brooks/Cole Cengage Learning (2009).Google Scholar
  28. 28.
    J. B. Lambert, H. F. Shurvell, and R. G. Cooks, Introduction to Organic Spectroscopy, Macmillan, New York (1987).Google Scholar
  29. 29.
    R. J. Anderson, D. J. Bendell, and P. W. Groundwater, Organic Spectroscopic Analysis, The Royal Society of Chemistry (RSC) Sunderland (2004).Google Scholar
  30. 30.
    K. Fukui, Science, 218, 747–754 (1982).ADSCrossRefGoogle Scholar
  31. 31.
    N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem., 29, 839–845 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dereli Vocational SchoolGiresun UniversityGiresunTurkey
  2. 2.Vocational School of Health ServicesGiresun UniversityGiresunTurkey

Personalised recommendations