Advertisement

Spectral Ellipsometry Study of Silicon Surfaces Implanted with Oxygen and Helium Ions

  • V. V. BazarovEmail author
  • V. I. Nuzhdin
  • V. F. Valeev
  • N. M. Lyadov
Article
  • 7 Downloads

Results are given for a spectral ellipsometry study of silicon surfaces implanted with oxygen ions in the dose range 7.5·1014–3.7·1016 ions/cm2 and helium ions in the range 6·1016–6·1017 ions/cm2 with energy 40 keV at constant ion current density 2 μA/cm2. The irradiated substrates were at room temperature. Curves are shown for the dependence of the thickness of the implanted layer in the irradiated plates and the dependence of the extent of amorphization of this layer on the ion implantation dose.

Keywords

amorphous silicon ion implantation spectral ellipsometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Petrik, O. Polga, M. Fried, T. Lohner, N. Q. Khanh, and J. Gyulai, J. Appl. Phys., 93, 1987–1990 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    D. Shamiryan and D. V. Likhachev, in: M. Goorsky (editor), Ion Implantation, InTech (2012), pp. 89–104.Google Scholar
  3. 3.
    V. V. Bazarov, V. F. Valeev, V. I. Nuzhdin, Y. N. Osin, G. G. Gumarov, and A. L. Stepanov, Solid State Phenom., 233–234, 525–529 (2015).Google Scholar
  4. 4.
    V. V. Bazarov, V. I. Nuzhdin, V. F. Valeev, V. V. Vorobev, Yu. N. Osin, and A. L. Stepanov, Zh. Prikl. Spektrosk., 83, No. 1, 55–59 (2016) [J. Appl. Spectrosc., 83, 47–50 (2016)].Google Scholar
  5. 5.
    V. V. Bazarov, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov, Vacuum, 148, 254–257 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    K. Tsunoda, S. Adachi, and M. Takahashi, J. Appl. Phys., 91, 2936–2941 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    K. Kurihara, S. Hikino, and S. Adachi, J. Appl. Phys., 96, 3247–3254 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    K. V. Karabeshkin, P. A. Karasev, and A. I. Titov, Fiz. Tekhn. Poluprovodn., 47, No. 2, 206–210 (2013) [Semiconductors, 47, 242–246 (2013)]Google Scholar
  9. 9.
    K. V. Karabeshkin, P. A. Karasev, and A. I. Titov, Fiz. Tekhn. Poluprovodn., 50, No. 8, 1009–1015 (2016) [Semiconductors, 50, No. 8, 989–995 (2016)].Google Scholar
  10. 10.
    K. Kimura, Y. Oota, K. Nakajima, M. Suzuki, T. Aoki, J. Matsuo, A. Agarwal, B. Freer, A. Stevenson, and M. Ameen, Nucl. Instr. Methods Phys. Res. B, 211, 206–210 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    K. Kimura, S. Joumori, Y. Oota, K. Nakajima, and M. Suzuki, Nucl. Instr. Methods Phys. Res. B, 219–220, 351–357 (2004).CrossRefGoogle Scholar
  12. 12.
    A. V. Khomich, V. I. Kovalev, E. V. Zavedeev, R. A. Khmelnitskiy, and A. A. Gippius, Vacuum, 78, 583–587 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM. The Stopping and Range of Ions in Matter, SRIM Company (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Bazarov
    • 1
    Email author
  • V. I. Nuzhdin
    • 1
  • V. F. Valeev
    • 1
  • N. M. Lyadov
    • 1
  1. 1.Kazan E. K. Zavoisky Physical-Technical Institute (KPhTI), Kazan Science CenterRussian Academy of SciencesKazanRussia

Personalised recommendations