Advertisement

Construction of a Classification Model for Bulk Cereal Grains from Diffuse Reflectance Spectra in the Near Infrared Region, Using Logistic Regression as an Example

  • S. V. ProtsenkoEmail author
  • V. S. Mishurnaya
  • E. S. Voropai
Article

We have experimentally obtained support for the feasibility of detecting cereal grains of different grinds from the diffuse reflectance spectrum. As the features describing the diffuse reflectance spectra of wheat and oats of different grinds and moisture contents in the near IR range, we used combinations of optical densities and their second derivatives for the wavelengths 1200, 1422, 1778, 1916, and 2114 nm. Using logistic regression as an example, we constructed 20 classification models based on the two features: 10 models for the optical density and 10 models for the second derivative of the optical density, corresponding to the selected wavelengths. The best classification results were obtained with an algorithm using the values of the second derivative of the optical density at λ = 1778 nm and 2114 nm as the features.

Keywords

diffuse reflection infrared spectroscopy logistic regression machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Krishchenko, Near Infrared Spectroscopy [in Russian], Kronn-Press, Moscow (1997).Google Scholar
  2. 2.
    E. S. Voropai, V. G. Belkin, S. V. Protsenko, K. V. Govorun, and E. A. Kolova, Vestn. Bel. Gos. Univ., Ser. 1, Fiz. Mat. Inform., No. 1, 16–20 (2016).Google Scholar
  3. 3.
    V. G. Belkin and S. V. Protsenko, Vestn. Bel. Gos. Univ., Ser. 1, Fiz. Mat. Inform., No. 3, 22–25 (2014).Google Scholar
  4. 4.
    S. V. Protsenko, E. S. Voropai, and V. G. Belkin, Zh. Prikl. Spektrosk., 84, No. 6, 1009–1012 (2017) [S. V. Protsenko, E. S. Voropai, and V. G. Belkin, J. Appl. Spectrosc., 84, 1081–1083 (2017) (English translation)].Google Scholar
  5. 5.
    S. V. Protsenko, E. S. Voropai, and V. G. Belkin, in: Proceedings, International Scientific and Technical Conference on Materials, Equipment, and Energy Conservation Technologies, Mogilev, 27 April 2017 [in Russian], BRU (2017).Google Scholar
  6. 6.
    S. V. Protsenko and V. G. Belkin, Proceedings, Twenty-Fourth International Scientific and Applied Conference of Graduate and Undergraduate Students on the Physics of the Condensed State, Grodno, 21 April 2016 [in Russian], GrGU (2016), pp. 174–176.Google Scholar
  7. 7.
    D. W. Hosmer, Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression, 398, Wiley (2013).Google Scholar
  8. 8.
    S. Menard, Applied Logistic Regression Analysis, 106, Sage (2002).Google Scholar
  9. 9.
    E. Alpaydin, Introduction to Machine Learning, MIT Press (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Protsenko
    • 1
    Email author
  • V. S. Mishurnaya
    • 1
  • E. S. Voropai
    • 1
  1. 1.Belorussian State UniversityMinskBelarus

Personalised recommendations