Advertisement

Analysis of Nitropolycyclic Aromatic Hydrocarbons in Fine Particulate Matter by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Using Fe3O4/ZIF-8 Magnetic Nanocomposites as Matrix

  • Haojiang Wang
  • Xuan Wang
  • Wei BianEmail author
  • Tijian Sun
  • Zongwei Cai
  • Jiancong Wei
Article
  • 1 Downloads

Core-shell magnetic metal organic nanocrystals were synthesized and used as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Four nitropolycyclic aromatic hydrocarbons (nitro-PAHs) were successfully detected by using negative-ion MALDI-TOF MS without background interference. Furthermore, the magnetic nanocomposites (MNCs) coated with zeolitic imidazolate framework-8 (ZIF-8) showed excellent adsorption and enrichment capacity, and can be isolated with a magnet and directly spotted on the stainless steel plate for MALDI measurement. It was also analyzed nitro-PAHs in PM2.5 samples using the ZIF-8-coated magnetic nanocomposite as adsorbent and matrix.

Keywords

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Fe3O4/ZIF-8 magnetic nanocomposites nitropolycyclic aromatic hydrocarbons enrichment and analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gao, P. E. Saide, J. Y. Xin, Y. S. Wang, Z. R. Liu, Y. X. Wang, Z. F. Wang, M. Pagowski, S. K. Guttikunda, and G. R. Carmichael, Environ. Sci. Technol., 51, 2178–2185 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Shen, Y. Y. Wu, G. D. Chen, H. J. M. Van Grinsven, X. F. Wang, B. J. Gu, and X. M. Lou, Environ. Pollut., 224, 631–637 (2017).CrossRefGoogle Scholar
  3. 3.
    Y. M. Guo, H. M. Zeng, R. S. Zheng, S. S. Li, G. Pereira, Q. Y. Liu, W. Q. Chen, and R. Huxley, Sci. Total Environ., 579, 1460–1466 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    C. B. Song, J. J. He, L. Wu, T. S. Jin, X. Chen, R. P. Li, P. P. Ren, L. Zhang, and H. J. Mao, Environ. Pollut., 223, 575–586 (2017).CrossRefGoogle Scholar
  5. 5.
    D. M. Agudelo-Castaneda, E. C. Teixeira, I. L. Schneider, S. R. Lara, and L. F. O. Silva, Environ. Pollut., 224, 158–170 (2017).CrossRefGoogle Scholar
  6. 6.
    X.-Y. Yang, K. Igarashi, N. Tang, J. M. Lin, W. Wang, K. Takayuki, T. Akira, and H. Kazuichi, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 695, 29–34 (2010).CrossRefGoogle Scholar
  7. 7.
    K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, and T. Yohida, Rapid Commun. Mass Spectrom., 2, 151 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    P. Hart, E. Wey, T. D. Mchugh, I. Balakrishnan, and O. Belgacem, Microbio l. Methods, 111, 1–8 (2015).CrossRefGoogle Scholar
  9. 9.
    J. J. A. van Kampen, P. C. Burgers, R. de Groot, R. A. Gruters, and T. M. Luider, Mass Spectrom. Rev., 30, 101–120 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    R. Arakawa and K. Hideya, Anal. Sci., 26, 1229–1240 (2010).CrossRefGoogle Scholar
  11. 11.
    H. Zhang, S. W. Cha, and E. S. Yeung, Anal. Chem., 79, 6575–6584 (2007).CrossRefGoogle Scholar
  12. 12.
    Q. H. Min, X. X. Zhang, X. Q. Chen, S. Y. Li, and J. J. Zhu, Anal. Chem., 86, 9122–9130 (2014).CrossRefGoogle Scholar
  13. 13.
    M. H. Lu, Y. Q. Lai, G. N. Chen, and Z. W. Cai, Anal. Chem., 83, 3161–3169 (2011).CrossRefGoogle Scholar
  14. 14.
    R. N. Ma, M. H. Lu, L. Ding, H. X. Ju, and Z. W. Cai, Chem. Eur. J., 19, 102–108 (2013).CrossRefGoogle Scholar
  15. 15.
    B. L. Walton and G. F. Verbeck, Anal. Chem., 86, 8114–8120 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. F. Huang and H. T. Chang, Anal. Chem., 79, 4852–4859 (2007).CrossRefGoogle Scholar
  17. 17.
    J. Wei, J. M. Buriak, and G. Siuzdak, Nature., 399, 243–246 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    A. Nordstroem, J. V. Apon, W. Uritboonthai, E. P. Sgo, and G. Iuzdak, Anal. Chem., 78, 272–278 (2006).CrossRefGoogle Scholar
  19. 19.
    C.-K. Chiang, W.-T. Chen, and H.-T. Chang, Chem. Soc. Rev., 40, 1269–1281 (2011).CrossRefGoogle Scholar
  20. 20.
    Y.-H. Shih, C.-H. Chien, B. Singco, C.-L. Hsu, C.-H. Lin, and H.-Y. Huang, Chem. Commun., 49, 4929–4931 (2013).CrossRefGoogle Scholar
  21. 21.
    Z. A. Lin, W. Bian, J. N. Zheng, and Z. W. Cai, Chem. Commun., 51, 8785–8788 (2015).CrossRefGoogle Scholar
  22. 22.
    R. Banerjee, A. Phan, B. Wang, Ca. Knobler, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Science, 319, 939–943 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    G. Lu and J. T. Hupp, J. Am. Chem. Soc., 132, 7832–7833 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Zheng, C. Cheng, W.-J. Fang, C. Chen, R.-W. Yan, and H.-X. Huai, Cryst. Eng. Commun., 16, 3960–3964 (2014).CrossRefGoogle Scholar
  25. 25.
    J. N. Zheng, Z. A. Lin, G. Lin, H. H. Yang, and L. Zhang, J. Mater . Chem. B, 3, 2185–2191 (2015).CrossRefGoogle Scholar
  26. 26.
    Y. C. Pan, Y. Y. Liu, G. F. Zeng, L. Zhao, and Z. P. Lai, Chem. Commun., 47, 2071–2073 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Haojiang Wang
    • 1
  • Xuan Wang
    • 2
  • Wei Bian
    • 1
    Email author
  • Tijian Sun
    • 1
  • Zongwei Cai
    • 3
  • Jiancong Wei
    • 1
  1. 1.School of Basic Medical ScienceShanxi Medical UniversityTaiyuanChina
  2. 2.College of PharmacyShanxi Medical UniversityTaiyuanChina
  3. 3.Hong Kong Baptist University, State Key Laboratory of Environmental and Biological AnalysisHong KongChina

Personalised recommendations