Advertisement

FT-IR and UV-Spectroscopic Analyses of the Chemical Compositions of Needles from European Spruce Picea abies and Scots Pine Pinus sуlvestris L.

  • Е. М. ТаrasovаEmail author
  • S. D. Khizhnyak
  • А. F. Меysurovа
  • P. М. Pakhomov
Article
  • 1 Downloads

Samples of needles from European spruce Picea abies and Scots pine Pinus sylvestris L. that were collected in Tver in zones with different anthropogenic impacts were investigated. The chemical compositions of conifer needles in different years of life were determined. IR and UV absorption spectra were used to compare pollutant accumulations in needles of different conifer species at collection points with similar anthropogenic impacts. The dependence of the qualitative chemical composition of the needles on the type of pollutant (depending on the collection point) was determined.

Keywords

European spruce Picea abies Scots pine Pinus sylvestris L. FT-IR spectroscopy electronic spectroscopy chemical composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Alekseev, Monitoring Forest Ecosystems [in Russian], LTA, St. Petersburg (1997), p. 116.Google Scholar
  2. 2.
    I. A. Zarubina, Evaluation of the Condition of Scots Pine (Pinus sylvestris L.) with Anthropogenic Air Pollution, Author′s Abstract of a Candidate Dissertation in Agricultural Sciences, Krasnoyarsk (2011), p. 188.Google Scholar
  3. 3.
    Y. Oishi, J. Environ. Prot., No. 4, 106–113 (2013).Google Scholar
  4. 4.
    V. A. Alekseev, in: Proc. Sci. Conf. ″Interaction of Forest Ecosystems and Air Pollutants″ [in Russian], Tallinn (1982), pp. 16–26.Google Scholar
  5. 5.
    State Report on Environmental Conditions and Protection in Tver Oblast in 2016, El. Portal, Tver (2016).Google Scholar
  6. 6.
    State Pharmacopoeia of the Russian Federation, GPM 1.5.1.0001.15, Medicinal Plant Raw Material (2015).Google Scholar
  7. 7.
    G. Socrates (Ed.), Infrared Characteristic Group Frequencies. Tables and Charts, John Wiley & Sons (1994).Google Scholar
  8. 8.
    B. Dinkelaker, V. Rohmeld, and H. Marscner, Plant Cell Environ., 12, 285–292 (1989).CrossRefGoogle Scholar
  9. 9.
    G. Neumann, A. Massonnneau, E. Martinoia, and V. Rohmeld, Planta, 208, No. 4, 373–382 (1999).CrossRefGoogle Scholar
  10. 10.
    A. F. Meisurova, S. D. Khizhnyak, and P. M. Pakhomov, Ekol. Khim., 16, No. 4, 27–35 (2007).Google Scholar
  11. 11.
    N. Duraees, I. Bobos, and E. Ferreira Da Silva, Portugal Mineral. Mag., 72, No. 1, 405–409 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    A. F. Meisurova, Vestn. Tver. Gos. Univ., Ser. Biol. Ekol., 7, No. 17, 63–73 (2008).Google Scholar
  13. 13.
    Yu. V. Golubtsova, Usp. Sovrem. Estestvozn., No. 10, 20–24 (2016).Google Scholar
  14. 14.
    M. N. Zaprometov, Biokhimiya, 42, No. 1, 3–20 (1977).Google Scholar
  15. 15.
    M. B. Ikrami, K. K. Mirzorakhimov, and F. A. Rakhimova, in: Proc. I Int. Sci.-Pract. Conf. ″Scientific Progress in Biology, Chemistry, Physics″ [in Russian], Novosibirsk (2011), pp. 42–56.Google Scholar
  16. 16.
    I. P. Deineko, A. V. Propanovich, V. F. Rubanova, and L. P. Belov, Khim. Rastit. Syr′ya, No. 1, 13–18 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Е. М. Таrasovа
    • 1
    Email author
  • S. D. Khizhnyak
    • 1
  • А. F. Меysurovа
    • 1
  • P. М. Pakhomov
    • 1
  1. 1.Тver State UniversityTverRussia

Personalised recommendations