Advertisement

Quantitative Analysis of Trace Metals in Engine Oil Using Indirect Ablation-Laser Induced Breakdown Spectroscopy

  • Junshan XiuEmail author
  • Lili Dong
  • Yunyan Liu
  • Jiyuan Li
Article
  • 4 Downloads

In engine oil, the element composition and concentration changes as the engine operates. A rapid and effective detection of these changes, therefore, is needed to prevent accidents. Indirect ablation laser-induced breakdown spectroscopy (IA-LIBS) is a new technology introduced specially for oil samples. In this paper, 5 different oils are used for the analysis. The matrix effect on the calibration curves of analytical elements (Cu, Ti, Fe, and Ni) in these oils is investigated. The results show that the matrix effect is reasonably negligible under the conditions of our experiment. A generalized calibration curve can be established for analytical metals in different types of oils. We use the generalized calibration curves established to determine the concentrations of Cu, Ti, Fe, and Ni in mixed oils. The IA-LIBS results show that good agreement is obtained between the measured and known values.

Keywords

indirect ablation LIBS metals in engine oils matrix effect calibration curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, Talanta, 69, No. 5, 1072–1078 (2006).CrossRefGoogle Scholar
  2. 2.
    J. O. Nriagu and J. M. Pacyna, Nature, 333, No. 6169, 134–139 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    R. Q. Aucélio, R. M. de Souza, R. C. de Campos, N. Miekeley, and C. L. P. da Silveira, Spectrochim. Acta B, 62, No. 9, 952–961 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    Y. H. Wei, J. Y. Zhang, T. C. Dai, T. H. Tu, and L. G. Luo, Food Sci., 32, No. 12, 213–215 (2011).Google Scholar
  5. 5.
    K. J. Eisentraut, R. W. Newman, C. S. Saba, R. E. Kauffman, and W. E. Rhine, Anal. Chem., 56, No. 9, 1086A–1091A (1984).Google Scholar
  6. 6.
    B. F. Reis, M. Knochen, G. Pignalosa, N. Cabrera, and J. Giglio, Talanta, 64, No. 5, 1220–1225 (2004).CrossRefGoogle Scholar
  7. 7.
    A. V. Zmozinski, A. de Jesus, M. G. R. Vale, and M. M. Silva, Talanta, 83, No. 2, 637–643 (2010).CrossRefGoogle Scholar
  8. 8.
    R. M. Souza, C. L. P. da Silveira, and R. Q. Aucélio, Anal. Sci., 20, No. 2, 351–355 (2004).CrossRefGoogle Scholar
  9. 9.
    G. M. Mastoi, M. Y. Khuhawar, and R. B. Bozdar, J. Quant. Spectrosc. Radiat. Transfer, 102, No. 2, 236–240 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M. P. Escobar, B. W. Smith, and J. D. Winefordner, Anal. Chim. Acta, 320, No. 1, 11–17 (1996).CrossRefGoogle Scholar
  11. 11.
    I. M. Goncalves, M. Murillo, and A. M. Gonzalez, Talanta, 47, No. 4, 1033–1042 (1998).CrossRefGoogle Scholar
  12. 12.
    P. Celio, C. Juliana, M. C. S. Lucas, and B. G. Fabinao, J. Braz. Chem. Soc., 18, No. 3, 463–512 (2007).CrossRefGoogle Scholar
  13. 13.
    A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, Spectrochim. Acta B, 62, No. 8, 721–738 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Anal. Chim. Acta, 429, No. 2, 269–278 (2001).CrossRefGoogle Scholar
  15. 15.
    C. A. D'Angelo, M. Garcimuño, D. M. D. Pace, and G. Bertuccellil, J. Quant. Spectrosc. Radiat. Transfer, 164, 89–96 (2015).Google Scholar
  16. 16.
    F. Boué-Bigne, Spectrochim. Acta B, 63, No. 10, 1122–1129 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    J. Kaiser, M. Galiová, K. Novotný, R. Červenk, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdličk, K. Stejskal, V. Adam, and R. Kizek, Spectrochim. Acta B, 64, No. 1, 67–73 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    F. Y. Yueh, R. C. Sharma, J. P. Singh, H. S. Zhang, and W. A. Spencer, Air Waste Manage., 52, No. 11, 1307–1315 (2002).CrossRefGoogle Scholar
  19. 19.
    J. S. Xiu, X. S. Bai, E. Negre, V. Motto-Ros, and J. Yu, Appl. Phys. Lett., 102, No. 102, 2441011–2441015 (2013).Google Scholar
  20. 20.
    J. S. Xiu, V. Motto-Ros, G. Panczer, R. E. Zheng, and J. Yu, Spectrochim. Acta B, 91, 24–30 (2014).CrossRefGoogle Scholar
  21. 21.
    P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, Spectrochim. Acta B, 60, No. 11, 1482–1485 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringShandong University of TechnologyZiboChina
  2. 2.School of Chemistry and Chemical EngineeringShandong University of TechnologyZiboChina

Personalised recommendations