Advertisement

Quantum-Cascade Lasers in Medicine and Biology (Review)

  • P. I. Abramov
  • E. V. Kuznetsov
  • L. A. SkvortsovEmail author
  • M. I. Skvortsova
Article
  • 13 Downloads

Problems connected with the use of quantum-cascade lasers (QCLs) in biomedical practice are discussed. A comparative analysis was made of laser spectroscopic methods for noninvasive diagnostics of diseases by exhaled air; examples of the practical implementation of this idea based on QCL are given. The use of QCL in traditional laser surgery and laser angioplasty is discussed. Particular attention is paid to terahertz imaging of soft tissues, as well as to microspectroscopy and its use in the creation of hyperspectral images of biological tissue in the midinfrared range. A number of problems associated with the use of QCL in medicine are raised, and possible directions for promising research where QCL can play a decisive role are indicated.

Keywords

quantum-cascade lasers soft biological tissue infrared absorption spectroscopy breath analysis laser scalpel laser angioplasty terahertz imaging microspectroscopy infrared hyperspectral images pump-probe technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Stepanov, Tr. In-ta Obshchei Fiziki im. A. M. Prokhorova, 61, 47–53 (2005).Google Scholar
  2. 2.
    E. V. Stepanov and V. A. Milyaev, Kvantovaya Élektron., 32, No. 11, 987–992 (2002)CrossRefGoogle Scholar
  3. 3.
    V. L. Vaks, E. G. Domracheva, E. A. Sobakinskaya, and M. B. Chernyaeva, Uspekhi Fiz. Nauk. 184, No. 7, 739–758 (2014).CrossRefGoogle Scholar
  4. 4.
    V. Vaks, J. Infr. Millim. Terahertz Waves, 33, No. 1, 43–53 (2012).CrossRefGoogle Scholar
  5. 5.
    L. A. Skvortsov, Zh. Prikl. Spektrosk., 81, No. 5, 653–678 (2014) [L. A. Skvortsov, J. Appl. Spectrosc., 81, 725–749 (2014)].Google Scholar
  6. 6.
    A. Schwaighofer, M. Brandstetter, and B. Lendl, Chem. Soc. Rev., 46, No. 19, 5903–5924 (2017).CrossRefGoogle Scholar
  7. 7.
    K. Wörle, F. Seichter, A. Wilk, C. Armacost, T. Day, M. Godejohann, U. Wachter, and B. Mizaikoff, Analyt. Chem., 85, No. 5, 2697–2702 (2013).CrossRefGoogle Scholar
  8. 8.
    C. Wang and P. Sahay, Sensors, 9, No. 10, 8230–8262 (2009).CrossRefGoogle Scholar
  9. 9.
    V. Spagnolo, R. Lewicki, L. Dong, and F. K. Tittel, Proc. 2011 IEEE International Workshop on Medical Measurements and Applications (MeMeA), 332–335 (2011).Google Scholar
  10. 10.
    T. H. Risby and F. K. Tittel, Opt. Eng., 49, 111123–111137 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, IEEE Sens. J., 10, No. 1, 76–84 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, J. Innovat. Opt. Health Sci., 7, No. 3, 1450029-1–9 (2014).CrossRefGoogle Scholar
  13. 13.
    Y. Huang and J. Kang, Proc. SPIE, 8209, 82091W (2012)ADSCrossRefGoogle Scholar
  14. 14.
    K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, Adv. Biomed. Eng., 1, 74–80 (2012).CrossRefGoogle Scholar
  15. 15.
    K. Hashimura, K. Ishii, and K. Awazu, Opt. Rev., 23, No. 2, 299–306 (2016).CrossRefGoogle Scholar
  16. 16.
    A. Schwaighofer, M. Montemurro, S. Freitag, C. Kristament, M. Culzoni, and B. Lendl, Analyt. Chem., 90, No. 11, 7072–7079 (2018).CrossRefGoogle Scholar
  17. 17.
    S. Kim, F. Hatami, A. Gu, A. Kurian, J. Ford, J. Harris, G. Scalari, and J. Faist, in: Lasers and Electro-Optics Society, LEOS 2006, 19th Annual Meeting of the IEEE, 231–232 (2006).Google Scholar
  18. 18.
    S. Kim, F. Hatami, G. Harris, A. Kurian, J. Ford, D. King, G. Scalari, M. Giovanny, M. Hoyler, and J. Faist, Appl. Phys. Lett., 88, No. 15, 153903-1–153903-3 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, Sci. Rep. (Nature Publisher Group), 8, No. 1, 1–10 (2018).Google Scholar
  20. 20.
    D. Zhang, C. Li, C. Zhang, M. Slipchenko, G. Eakins, and J. Cheng, Sci. Adv., 2, No. 9, e1600521-1–7 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    M. Vitiello, G. Scalari, B. Williams, and P. Natale, Opt. Express, 23, No. 4, 5167–5182.Google Scholar
  22. 22.
    M. Razeghi, Q. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express, 23, No. 7, 8462–8475 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. Tittel, Chem. Phys. Lett., 487, 1–18 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. Wang, F. Capasso, C. Kumar, and N. Patel, Appl. Phys. Lett., 95, No. 14, 14113-1–14113-9.Google Scholar
  25. 25.
    I. I. Zasabitskii, XII All-Russia Youth Concourse-Conference on Optics and Laser Physics, 12–16 November 2014, Samara (2014); http://www.myshared.ru/slide/968796.
  26. 26.
    J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, IEEE J. Quantum Electron., 38, No. 6, 533–546 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    A. Tredicucci, F. Capasso, C. Gmachl, D. Sivco, A. Hutchinson, and A. Cho, Appl. Phys. Lett., 73, No. 15, 2101–2103 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett., 78, No. 2, 147–149 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    M. Belkin and F. Capasso, Phys. Scripta, 90, No. 1, 118002-13 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    B. Williams, S. Kumar, Q. Hu, and J. Reno, Electron. Lett., 42, No. 2, 89–91 (2006).CrossRefGoogle Scholar
  31. 31.
    A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Lett., 7, No. 35, 910–912 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    B. Williams, Nature Photon., 1, No. 9, 517 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    L. Skvortsov, Kvantovaya Élektron., 41, No. 12, 1051–1060 (2011).CrossRefGoogle Scholar
  34. 34.
    L. Skvortsov, Laser Methods of Remote Detection of Chemical Compounds on the Surface of Bodies [in Russian], Tekhnosfera, Moscow (2014).Google Scholar
  35. 35.
    L. Skvortsov, Kvantovaya Élektron., 42, No. 1, 1–11 (2012).CrossRefGoogle Scholar
  36. 36.
    H. Preier, Semicond. Sci. Technol., 5, S12–S20 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    Yu. Kuritsyn, Infrared Spectroscopy with Injection Lasers. Analytical Laser Spectroscopy [in Russian] (Ed. V. S. Letokhov), Nauka, Moscow (1986), pp. 120–173.Google Scholar
  38. 38.
    L. Skvortsov, Principles of Photothermal Radiography and Laser Thermography [in Russian], Tekhnosfera, Moscow (2017).Google Scholar
  39. 39.
    D. Caffey, M. Radunsky, V. Cook, M. Weida, P. Buerki, S. Crivello, and T. Day, Proc. SPIE, 7953, 79531K (2011).ADSCrossRefGoogle Scholar
  40. 40.
    R. Mihalcea, D. Baer, and R. Hanson, Appl. Opt., 35, 4059–4064 (1996).ADSCrossRefGoogle Scholar
  41. 41.
    D. Baer, R. Hanson, M. Newfield, and N. Gopaul, Opt. Lett., 19, 1900–1902 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    P. Eliseev, Introduction to Physics of Injection Lasers [in Russian], Nauka, Moscow (1983).Google Scholar
  43. 43.
    I. Gordon, L. Rothman, C. Hill, R. Kochanov, Y. Tan, P. Bernath, and B. Drouin, J. Quant. Spectrosc. Radiat. Transfer, 203, 3–69 (2017).ADSCrossRefGoogle Scholar
  44. 44.
    P. Kluczynski, J. Gustafsson, A. Lindberg, and O. Axner, Spectrochim. Acta B, 56, 1277–1354 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    B. Brumfield, M. M. Taubman, and M. Phillips, Photonics, 3, No. 2, 33 (2016).CrossRefGoogle Scholar
  46. 46.
    J. Haus, Optical Sensors: Basics and Applications, John Wiley & Sons (2010).Google Scholar
  47. 47.
    P. Zalicki and R. Zare, J. Chem. Phys., 102, No. 7, 2708–2717 (1995).ADSCrossRefGoogle Scholar
  48. 48.
    J. Wojtas, J. Mikolajczyk, and Z. Bielecki, Sensors, 13, No. 6, 7570–7598 (2013).CrossRefGoogle Scholar
  49. 49.
    J. Scherer, J. Paul, H. Jiao, and A. O'Keefe, Appl. Opt., 40, 6725–6732 (2001).ADSCrossRefGoogle Scholar
  50. 50.
    D. Baer, J. Paul, J. Gupta, and A. O'Keefe, Appl. Phys. B: Lasers O., 75, 261–265 (2002).ADSCrossRefGoogle Scholar
  51. 51.
    Y. Bakhirkin, A. Kosterev, C. Roller, R. Curl, and F. Tittel, Appl. Opt., 43, 2257–2266 (2004).ADSCrossRefGoogle Scholar
  52. 52.
    Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, Appl. Phys. B: Lasers O., 82, 149–154 (2006).ADSCrossRefGoogle Scholar
  53. 53.
    R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B: Lasers O., 71, 231–236 (2000).ADSCrossRefGoogle Scholar
  54. 54.
    H. Dahnke, D. Kleine, P. Hering, and M. Mürtz, Appl. Phys. B: Lasers O., 72, 971–975 (2001).ADSCrossRefGoogle Scholar
  55. 55.
    H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Mürtz, Appl. Phys. B: Lasers O., 72, 121–125 (2001).ADSCrossRefGoogle Scholar
  56. 56.
    G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Mueller, A. Popp, and F. Kuehnemann, Opt. Lett., 29, 797–799 (2004).ADSCrossRefGoogle Scholar
  57. 57.
    D. Halmer, S. Thelen, P. Hering, and M. Mürtz, Appl. Phys. B: Lasers O., 85, 437–443 (2006).ADSCrossRefGoogle Scholar
  58. 58.
    D. Halmer, G. von Basum, P. Hering, and M. Mürtz, Opt. Lett., 30, 2314–2316 (2005).ADSCrossRefGoogle Scholar
  59. 59.
    P. Korolenko, I. Nikolaev, V. Ochkin, and S. Tskhai, Kvantovaya Élektron., 44, No. 4, 353–361 (2014).CrossRefGoogle Scholar
  60. 60.
    A. O'Keefe, J. Scherer, and J. Paul, Chem. Phys. Lett., 307, Nos. 5–6, 343–349 (1999).ADSCrossRefGoogle Scholar
  61. 61.
    J. Paul, L. Lapson, and J. Anderson, Appl. Opt., 40, No. 27, 4904–4910 (2001).ADSCrossRefGoogle Scholar
  62. 62.
    G. Engel, W. Drisdell, F. Keutsch, E. Moyer, and J. Anderson, Appl. Opt., 45, No. 36, 9221–9229 (2006).ADSCrossRefGoogle Scholar
  63. 63.
    I. Nikolaev, V. Ochkin, M. Spiridonov, and S. Tskhai, Laser Phys., 21, 2088 (2011).ADSCrossRefGoogle Scholar
  64. 64.
    I. Nikolaev, V. Ochkin, and S. Tskhai, Laser Phys. Lett., 10, 115701 (2013).ADSCrossRefGoogle Scholar
  65. 65.
    L. Kreuzer, J. Appl. Phys., 42, 2934 (1971).ADSCrossRefGoogle Scholar
  66. 66.
    A. Rosencwaig and A. Gersho, J. Appl. Phys., 47, 64 (1976).ADSCrossRefGoogle Scholar
  67. 67.
    L. Skvortsov, Kvantovaya Élektron., 43, No. 1, 1–13 (2013).CrossRefGoogle Scholar
  68. 68.
    L. Skvortsov, Recent Patent. Eng., 3, No. 2, 129–145 (2009).CrossRefGoogle Scholar
  69. 69.
    B. Paldus, T. Spence, R. Zare, J. Oomens, F. Harren, D. Parker, and A. Hutchinson, Opt. Lett., 24, No. 3, 178–180 (1999).ADSCrossRefGoogle Scholar
  70. 70.
    F. Harren, G. Cotti, J. Oomens, and S. Hekkert, Encycloped. Analyt. Chem., 3, 2203–2226 (2000).Google Scholar
  71. 71.
    M. Haisch, P. Hering, P. Schadewaldt, H. Brosicke, B. Braden, S. Koletzko, and C. Steffen, Isotop. Environ. Health Stud., 30, Nos. 2–3, 253–257 (1994).CrossRefGoogle Scholar
  72. 72.
    F. Harren and J. Reuss, Progress in Photothermal and Photoacoustic Science and Technology, Life and Earth Science in: A. Mandelis and P. Hess Eds., SPIE, Bellingham, WA, 3, 83–127 (1997).Google Scholar
  73. 73.
    A. Miklos, P. Hess, and Z. Bozoki, Rev. Sci. Instrum., 72, 1937–1955 (2001).ADSCrossRefGoogle Scholar
  74. 74.
    A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, Sensors, 9, 9616 (2009).CrossRefGoogle Scholar
  75. 75.
    A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel, Opt. Lett., 27, No. 21, 1902–1904 (2002).ADSCrossRefGoogle Scholar
  76. 76.
    S. Ohira and K. Toda, Anal. Chim. Acta, 619, No. 2, 143–156 (2008).CrossRefGoogle Scholar
  77. 77.
    P. Pellegrino and R. Polcawich, Chem. Biol. Sensing IV, 5085, 52–64 (2003).ADSCrossRefGoogle Scholar
  78. 78.
    M. Bain, N. Mitchell, B. Armstrong, J. Uotila, I. Kauppinen, E. Terray, and B. Ward, Miniaturization and Integration of a Cantilever Based Photoacoustic Sensor into Micro Micromachined Device, Abst., No. 45, 2579 (2011).Google Scholar
  79. 79.
    A. Slutsky, Am. J. Respir. Crit. Care Med., 160, 2104–2117 (1999).CrossRefGoogle Scholar
  80. 80.
    Am. J. Respir. Crit. Care Med., 171, No. 8, 912–930 (2005).Google Scholar
  81. 81.
    P. Mazzone, X. Wang, Y. Xu, T. Mekhail, M. Beukemann, J. Na, and M. Sasidhar, J. Thoracic Oncol., 7, No. 1, 137–142 (2012).CrossRefGoogle Scholar
  82. 82.
    J. Shorter, D. Nelson, J. McManus, M. Zahniser, and D. Milton, IEEE Sensors J., 10, No. 1, 76–84 (2010).ADSCrossRefGoogle Scholar
  83. 83.
    A. Reyes-Reyes, Z. Hou, E. van Mastrigt, R. Horsten, J. De Jongste, M. Pijnenburg, and N. Bhattacharya, Opt. Express, 22, No. 15, 18299–18309 (2014).ADSCrossRefGoogle Scholar
  84. 84.
    A. Reyes-Reyes, R. Horsten, H. Urbach, and N. Bhattacharya, Anal. Chem., 87, No. 1, 507–512 (2014).CrossRefGoogle Scholar
  85. 85.
    Toshiba Develops Breath Analyzer for Medical Applications, Toshiba, Press Release (March 18, 2014).Google Scholar
  86. 86.
    Aerodyne Research Inc., Single Laser Quantum Cascade LaserTrace Gas Monitors: The Mini Monitor (2016).Google Scholar
  87. 87.
    Composition of Exhaled and Alveolar Air [in Russian], http://www.amedgrup.ru/vozduh.html.
  88. 88.
    M. Thorpe, K. Moll, J. Jones, B. Safdi, and J. Ye, Science, 311, 1595–1599 (2006).ADSCrossRefGoogle Scholar
  89. 89.
    M. Thorpe, D. Balslev-Clausen, M. Kirchner, and J. Ye, Opt. Express, 16, 2387–2397 (2008).ADSCrossRefGoogle Scholar
  90. 90.
    M. Bader, D. Tilki, G. Gratzke, R. Sroka, C. Stief, and O. Reich, World J. Urol., 28, 169–172 (2010).CrossRefGoogle Scholar
  91. 91.
    N. Kelbauskiene, K. Baseviciene, A. Goharkhay, V. Moritz, and V. Machiulskeiene, Laser Med. Sci., 26, 445–452 (2011).CrossRefGoogle Scholar
  92. 92.
    S. Renvert, C. Lindahl, A. Jansåker, and G. Persson, J. Clin. Periodontol., 38, 65–73 (2011).CrossRefGoogle Scholar
  93. 93.
    A. Chapas, L. Brightman, S. Sukal, E. Hale, D. Daniel, L. Bernstein, and R. Geronemus, Lasers Surg. Med., 40, 381–386 (2008).CrossRefGoogle Scholar
  94. 94.
    N. Kalintseva and V. Serebryakov, Fiber Methods for Delivery of Radiation for Medical Lasers of Mid-IR Region: Requirements and Parameters [in Russian]; book.sarov.ru/wp-content/uploads/lazer-X-2017-15.pdf.Google Scholar
  95. 95.
    B. Tarasevich, IR Spectra of Main Classes of Organic Compounds, Ref. Mater. [in Russian], MGU im. M. V. Lomonosova (2012).Google Scholar
  96. 96.
    Y. Andreev, A. Ionin, I. Kinyaevsky, Y. Klimachev, A. Kozlov, A. Kotkov, and A. Shaiduko, Quantum Electron., 43, No. 2, 139 (2013).ADSCrossRefGoogle Scholar
  97. 97.
    G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Osso, J. Tribble, J. Werkhaven, and D. O'Day, Nature, 371, 416–419 (2004).ADSCrossRefGoogle Scholar
  98. 98.
    J. Youn, G. Peavy, and V. Venugopalan, Lasers Surg. Med., 36, 202–209 (2004).CrossRefGoogle Scholar
  99. 99.
    M. Heya, Y. Fukami, H. Nagats, Y. Nishida, and K. Awazu, Nucl. Instrum. Meth. Phys. Res., A 507, 564–568 (2003).Google Scholar
  100. 100.
    M. Mackanos, J. Kozub, D. Hachey, K. Joos, D. Ellis, and E. Jansen, Phys. Med. Biol., 50, 1885–1899 (2005).CrossRefGoogle Scholar
  101. 101.
    Y. Nakajima, K. Iwatsuki, K. Ishii, S. Suzuki, T. Fujinaka, T. Yoshimine, and K. Awazu, J. Neurosurg., 104, 426–428 (2006).CrossRefGoogle Scholar
  102. 102.
    H. Hazama, Y. Takatani, and K. Awazu, Proc. SPIE, 6455, 645507 (2007).CrossRefGoogle Scholar
  103. 103.
    M. Mackanos, D. Simanovskii, K. Joos, H. Schwettman, and E. Jansen, Lasers Surg. Med., 39, 230–236 (2007).CrossRefGoogle Scholar
  104. 104.
    J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D. Piston, K. Joos, and M. Hutson, Biomed. Opt. Express, 2, 1275–1281 (2011).CrossRefGoogle Scholar
  105. 105.
    G. Edwards, R. Pearlstein, M. Copeland, M. Hutson, K. Latone, A. Spiro, and G. Pasmanik, Opt. Lett., 32, 1426–1428 (2007).ADSCrossRefGoogle Scholar
  106. 106.
    H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, Nature Photon., 2, No. 3, 170 (2008).ADSCrossRefGoogle Scholar
  107. 107.
    F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, Proc. SPIE, 2624, 67 (1996).ADSCrossRefGoogle Scholar
  108. 108.
    A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, Lasers Surg. Med., 18, No. 3, 231 (1996).CrossRefGoogle Scholar
  109. 109.
    G. Zheltov, O. Romanov, V. Burko, and É. Sobol, Laser Med., 20, No. 3, 96 (2016).Google Scholar
  110. 110.
    G. Zheltov, V. Lisinetskii, A. Grabtchikov, and V. Orlovich, Appl. Opt., 47, No. 3, 3549 (2008).ADSCrossRefGoogle Scholar
  111. 111.
    T. Hutchens, A. Darafsheh, A. Fardad, A. Antoszyk, H. Ying, V. Astratov, and N. Fried, J. Biomed. Opt., 19, No. 1, 018003-1–018003-8 (2014).ADSCrossRefGoogle Scholar
  112. 112.
    Y. Fukami and K. Awazu, Jpn. J. Appl. Phys., 42, No. 6, 3716–3721 (2015).ADSGoogle Scholar
  113. 113.
    S. Suzuki-Yoshihashi, S. Yamada, I. Sato, and K. Awazu, Proc. SPIE, 6083, 60830I-1 (2006).CrossRefGoogle Scholar
  114. 114.
    V. Serebryakov, É. Boiko, N. Petrishchev, and A. Yan, Opt. Zh., 77, No. 1, 9–23 (2010).Google Scholar
  115. 115.
    V. Tuchin, Lasers and Fiber Optics in Biomedical Investigations [in Russian], Fizmatlit (2010).Google Scholar
  116. 116.
    K. Hashimura, I. Katsunori, and A. Kunio, Jpn. J. Appl. Phys., 54, No. 11, 112701 (2015).ADSCrossRefGoogle Scholar
  117. 117.
    K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, Trans. Jpn. Soc. Med. Biol. Eng., 51 (Supplement) R-178 (2013).Google Scholar
  118. 118.
    N. Masaki and S. Okazaki, Biomed. Opt. Express, 9, No. 5, 2095–2103 (2018).CrossRefGoogle Scholar
  119. 119.
    S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, Phys. Med. Biol., 46, No. 9, R101–R112 (2001).ADSCrossRefGoogle Scholar
  120. 120.
    R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature, 414, 286–289 (2001).ADSCrossRefGoogle Scholar
  121. 121.
    D. Bennett, Z. Taylor, P. Tewari, R. Singh, M. Culjat, W. Grundfest, and E. Brown, J. Biomed. Opt., 16, No. 5, 057003 (2011).ADSCrossRefGoogle Scholar
  122. 122.
    D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, Appl. Phys. B, 68, No. 6, 1085–1094 (1999).ADSCrossRefGoogle Scholar
  123. 123.
    D. Crawley, C. Longbottom, V. Wallace, B. Cole, D. Arnone, and M. Pepper, J. Biomed. Opt., 8, No. 2, 303–308 (2003).ADSCrossRefGoogle Scholar
  124. 124.
    R. Woodward, P. Wallace, R. Pye, B. Cole, D. Arnone, E. Linfield, and M. Pepper, J. Invest. Dermatol., 120, No. 1, 72–78 (2003).CrossRefGoogle Scholar
  125. 125.
    M. Lazebnik, D. Popovic, L. McCartney, C. Watkins, M. Lindstrom, J. Harter, and W. Temple, Phys. Med. Biol., 52, No. 20, 6093 (2007).CrossRefGoogle Scholar
  126. 126.
    E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, Phys. Med. Biol., 49, No. 9, 1595 (2004).CrossRefGoogle Scholar
  127. 127.
    R. Weissleder and M. Pittet, Nature, 452, No. 7187, 580 (2008).ADSCrossRefGoogle Scholar
  128. 128.
    D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron., 2, 679 (1996).ADSCrossRefGoogle Scholar
  129. 129.
    R. Woodward, B. Cole, V. Wallace, R. Pye, D. Arnone, E. Linfield, and M. Pepper, Phys. Med. Biol., 47, No. 21, 3853–3863 (2002).CrossRefGoogle Scholar
  130. 130.
    P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, Phys. Med. Biol., 47, 3815 (2002).CrossRefGoogle Scholar
  131. 131.
    T. Chan, J. Bjarnason, A. Lee, M. Celis, and E. Brown, Appl. Phys. Lett., 85, 2523 (2004).ADSCrossRefGoogle Scholar
  132. 132.
    R. Köhler, A. Tredicucci, F. Beltram, H. Beere, E. Linfield, A. Davies, and F. Rossi, Nature, 417, No. 6885, 156 (2002).ADSCrossRefGoogle Scholar
  133. 133.
    C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. Beere, D. Ritchie, and C. Sirtori, Opt. Express, 14, No. 1, 171–181 (2006).ADSCrossRefGoogle Scholar
  134. 134.
    G. Bellisola and C. Sorio, Am. J. Cancer Res., 2, No. 1, 1 (2012).Google Scholar
  135. 135.
    M. Kole, R. Reddy, M. Schulmerich, M. Gelber, and R. Bhargava, Anal. Chem., 84, 10366–10372 (2012).CrossRefGoogle Scholar
  136. 136.
    N. Kröger-Lui, N. Gretz, K. Haase, B. Kränzlin, S. Neudecker, A. Pucci, and W. Petrich, Analyst, 140, No. 7, 2086–2092 (2015).ADSCrossRefGoogle Scholar
  137. 137.
    K. Haase, N. Kröger-Lui, A. Pucci, A. Schönhals, and W. Petrich, Faraday Discus., 187, 119–134 (2016).ADSCrossRefGoogle Scholar
  138. 138.
    P. Bassan, M. Weida, J. Rowlette, and P. Gardne, Analyst, 139, 3856–3859 (2014).ADSCrossRefGoogle Scholar
  139. 139.
    M. Pilling, A. Henderson, and P. Gardner, Anal. Chem., 89, 7348–7355 (2017).CrossRefGoogle Scholar
  140. 140.
    M. Pilling, A. Henderson, B. Bird, M. Brown, N. Clarke, and P. Gardner, Faraday Discus., 187, 135–154 (2016).ADSCrossRefGoogle Scholar
  141. 141.
    D. Lasne, G. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, Opt. Express, 15, 14184–14193 (2016).ADSCrossRefGoogle Scholar
  142. 142.
    A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, Science, 330, 353–356 (2010).ADSCrossRefGoogle Scholar
  143. 143.
    R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. McGill, Proc. SPIE, Defense, Security, and Sensing, Baltimore, MD, 9455, 945501 (2012).Google Scholar
  144. 144.
    A. Mërtiri, A. Totachawattana, H. Liu, M. K. Hong, T. Gardner, M. Y. Sander, and S. Erramilli, Conference on Lasers and Electro-Optics (CLEO’14), San Jose, CA, June 8–13, 2014 (2014).Google Scholar
  145. 145.
    M. Y. Sander, Mid-Infrared Photothermal Imaging, in Frontiers in Optics 2015, San Jose, CA, October 18–22, 2015 (2015).Google Scholar
  146. 146.
    G. Chebotareva, Laser Phys., 8, 941 (1998).Google Scholar
  147. 147.
    B. Wong, T. Milner, B. Anvari, A. Sviridov, A. Omel'chenko, V. Bagratashvili, E. Sobol, and J. Nelson, Laser. Med. Sci., 13, No. 1, 66–72 (1998).CrossRefGoogle Scholar
  148. 148.
    L. Skvortsov and V. Kirillov, Kvantovaya Élektron., 33, No. 12, 1113–1117 (2003).CrossRefGoogle Scholar
  149. 149.
    V. Kirillov and L. Skvortsov, Kvantovaya Élektron., 36, No. 8, 797–799 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. I. Abramov
    • 1
  • E. V. Kuznetsov
    • 1
  • L. A. Skvortsov
    • 1
    Email author
  • M. I. Skvortsova
    • 2
  1. 1.M. F. Stelmach JSC Polyus Research InstituteMoscowRussia
  2. 2.MIRÉA (Moscow Institute of Radiotechnology, Electronics, and Automation)Russian Technological UniversityMoscowRussia

Personalised recommendations