Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1121–1127 | Cite as

Application of Raman Spectroscopy for Analysis of Carbon Nanotube Distribution in Living Cells

  • E. N. GolubewaEmail author
  • M. V. Shuba
  • M. V. Vasilieu
  • T. A. Kulahava
Article
  • 7 Downloads

We have used Raman spectroscopy combined with confocal microscopy to study suspensions of single-wall and double-wall carbon nanotubes of different lengths and also multiwall carbon nanotubes. We have shown that the intensity of the G mode in the Raman spectrum of carbon nanotubes is directly proportional to the nanotube concentration, the exposure time, the exciting radiation power, and depth of focus in the transparent sample under study. We have established that the Raman spectra of longer carbon nanotubes (~1 μm) are characterized by higher intensity of the G mode compared with short carbon nanotubes (~250–450 nm). The dependences obtained were used to determine the local intracellular concentration of carbon nanotubes within the waist of the exciting laser beam, with the aim of mapping the carbon nanotube distribution inside the cells.

Keywords

carbon nanotubes Raman spectroscopy glioma cells local concentration intracellular distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Darmstadt (2008), pp. 3–4.Google Scholar
  2. 2.
    D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J. P. Briand, M. Prato, K. Kostarelos, and A. Bianco, Angew. Chem. Int. Ed. Engl., 43, No. 39, 5242–5246 (2004).CrossRefGoogle Scholar
  3. 3.
    Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Nano Res., 2, No. 2, 85–120 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Y. Madani, N. Naderi, O. Dissanayake, A. Tan, and A. M. Seifalian, Int. J. Nanomed., 6, 2963–2979 (2011).Google Scholar
  5. 5.
    A. M. Elhissi, W. Ahmed, I. U. Hassan, V. R. Dhanak, and A. D’Emanuele, J. Drug. Deliv., 2012:837827 (2012).CrossRefGoogle Scholar
  6. 6.
    H. K. Moon, S. H. Lee, and H. C. Choi, ACS Nano, 3, No. 11, 3707–3713 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Jain, S. R. Singh, and S. Pillai, J. Nanomed. Nanotechnol., 3, No. 5 (2012); doi:  https://doi.org/10.4172/2157-7439.1000140.
  8. 8.
    V. M. Irurzun, M. P. Ruiz, and D. E. Resasco, Carbon, 48, No. 10, 2873–2881 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, and S. S. Gambhir, Nano Lett., 8, No. 9, 2800–2805 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    C. Lamprecht, N. Gierlinger, E. Heister, B. Unterauer, B. Plochberger, M. Brameshuber, P. Hinterdorfer, S. Hild, and A. Ebner, J. Phys. Condens. Matter, 24, No. 16 (2012).Google Scholar
  11. 11.
    C. Bertulli, H. J. Beeson, T. Hasan, and Y. Y. Huang, Nanotechnol., 24, No. 26, 265102 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaul, and M. A. Pimenta, Phys. Rev. Lett., 93, 147406 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Liu, C. Davis, W. Cai, L. He, X. Chen, and H. Dai, PNAS, 105, 1410–1415 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, and H. Dai, Nature Nanotechnol., 2, No. 47, 47–52 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    D. A. Heller, S. Baik, T. E. Eurell, and M. S. Strano, Adv. Mater., 17, 2793 (2005).CrossRefGoogle Scholar
  16. 16.
    J. W. Kang, F. T. Nguyen, N. Lue, R. R. Dasari, and D. A. Heller, Nano Lett., 12, 67170–6174 (2012).Google Scholar
  17. 17.
    B. D. Holt, K. N. Dahl, and M. F. Islam, Small, 7, 2348–2355 (2011).CrossRefGoogle Scholar
  18. 18.
    I. V. Anoshkin, I. I. Nefedova, D. V. Lioubtchenko, I. S. Nefedov, and A. V. Räisänen, Carbon, 116, 547–552 (2017).CrossRefGoogle Scholar
  19. 19.
    M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, G. Niaura, D. Seliuta, I. Kasalynas, and G. Valusis, Nanotechnol., 23, 495714 (2012).CrossRefGoogle Scholar
  20. 20.
    M. V. Shuba, A. Paddubskaya, P. P. Kuzhir, S. M. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, J. Phys. D, 50, 08LT01 (2017).CrossRefGoogle Scholar
  21. 21.
    V. Neves, E. Heister, S. Costa, C. Tîlmaciu, E. Borowiak-Palen, C. E. Giusca, E. Flahaut, B. Soula, H. M. Coley, J. McFadden, and S. R. P. Silva, Adv. Funct. Mater., 20, No. 19, 3272–3279 (2010).CrossRefGoogle Scholar
  22. 22.
    A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, J. Biomed. Opt., 14, No. 2, 021006 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Golubewa
    • 1
    Email author
  • M. V. Shuba
    • 2
  • M. V. Vasilieu
    • 1
  • T. A. Kulahava
    • 1
  1. 1.Belorussian State UniversityMinskBelarus
  2. 2.Research Institute for Nuclear ProblemsBelorussian State UniversityMinskBelarus

Personalised recommendations