Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1085–1093 | Cite as

Technique for Inverting Transmission Spectra to Measure Freon Concentration

  • A. V. PolyakovEmail author
  • Ya. A. Virolainen
  • M. V. Makarova
Article
  • 2 Downloads

We propose an approach to selecting the optimal parameters for solving the inverse problem for determining the total freon content (TC) from ground-based spectrometric measurements of solar radiation. The approach was developed for measurements at the St. Petersburg NDACC station using a Bruker FS125HR Fourier-transform interferometer and implemented as applied to measurements of the total content of the hydrochlorofluorocarbon R-22 (HCF2Cl). Based on the optimal set of parameters obtained, we retrieved the total R-22 content above the St. Petersburg station in the period 2009–2018 and obtained estimates of the measurement uncertainties: average systematic uncertainty 4.8%, random uncertainty 3.7% over the entire observational period. A preliminary estimate of the trend is 2.64 ± 0.22% per year.

Keywords

freon freon content in the atmosphere ground-based method for measuring transparency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Molina and F. S. Rowland, Nature, 249, 810–812 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    M. Ko, P. Newman, S. Reimann, S. Strahan, R. Plumb, R. Stolarski, J. Burkholder, W. Mellouki, A. Engel, and E. Atlas, Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species, SPARC Report No. 6, WCRP-15/2013 (2013).Google Scholar
  3. 3.
    L. Hoffmann and M. Riese, Adv. Space Res., 33, 1068–1072 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. T. Brown, M. P. Chipperfield, C. Boone, C. Wilson, K. A. Walker, and P. F. Bernath, J. Quant. Spectrosc. Radiat. Transf., 112, 2552–2566 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    D. Cunnold, R. Weiss, R. Prinn, D. Hartley, P. Simmonds, P. Fraser, B. Miller, F. Alyea, and L. Porter, J. Geophys. Res.: Atm., 102, 1259–1269 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    B. Dunse, L. Steele, S. Wilson, P. Fraser, and P. Krummel, Atmos. Environ., 39, 6334–6344 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    F. Khosrawi, R. Müller, H. Irie, A. Engel, G. Toon, B. Sen, S. Aoki, T. Nakazawa, W. Traub, and K. J. Jucks, Geophys. Res.: Atm., 109, D06311 (2004).ADSGoogle Scholar
  8. 8.
    L. Hoffmann, M. Kaufmann, R. Spang, R. Müller, J. J. Remedios, D. P. Moore, C. M. Volk, T. von Clarmann, and M. Riese, Atm. Chem. Phys., No. 8, 3671–3688 (2008).Google Scholar
  9. 9.
    E. Mahieu, P. Duchatelet, P. Demoulin, K. A. Walker, E. Dupuy, L. Froidevaux, C. Randall, V. Catoire, K. Strong, C. D. Boone, P. F. Bernath, J.-F. Blavier, T. Blumenstock, M. Coffey, M. De Mazière, D. Griffith, J. Hannigan, F. Hase, N. Jones, K. W. Jucks, A. Kagawa, Y. Kasai, Y. Mebarki, S. Mikuteit, R. Nassar, J. Notholt, C. P. Rinsland, C. Robert, O. Schrems, C. Senten, D. Smale, J. Taylor, C. Tétard, G. C. Toon, T. Warneke, S. W. Wood, R. Zander, and C. Servais, Atm. Chem. Phys., No. 8, 6199–6221 (2008).Google Scholar
  10. 10.
    J. Notholt, Geophys. Res. Lett., 21, 2385–2388 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    R. Zander, E. Mahieu, P. Demoulin, P. Duchatelet, C. Servais, G. Roland, L. Delbouille, M. De Mazière, and C. P. Rinsland, Environ. Sci., No. 2, 295–303 (2005).Google Scholar
  12. 12.
    E. Mahieu, C. P. Rinsland, T. Gardiner, R. Zander, P. Demoulin, M. P. Chipperfield, R. Ruhnke, L. S. Chiou, and M. De Maziére, Geophys. Res. Abstr., 12, EGU2010-2420-3 (2010), https://meetingorganizer.copernicus.org/EGU2013/EGU2013-5690.pdf.Google Scholar
  13. 13.
    E. Mahieu, S. O’Doherty, S. Reimann, M. Vollmer, W. Bader, B. Bovy, B. Lejeune, P. Demoulin, G. Roland, and C. Servais, Geophys. Res. Abstr., 15, EGU2013-1185-1 (2013), https://meetingorganizer.copernicus.org/EGU2010/EGU2010-2420-3.pdf.Google Scholar
  14. 14.
    E. Mahieu, B. Lejeune, B. Bovy, C. Servais, G. C. Toon, P. F. Bernath, C. D. Boone, K. A. Walker, S. Reimann, and M. K. Vollmer, J. Quant. Spectrosc. Radiat. Transf., 186, 96–105 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    M. Zhou, C. Vigouroux, B. Langerock, P. Wang, G. Dutton, C. Hermans, N. Kumps, J.-M. Metzger, G. Toon, and M. De Mazière, Atm. Meas. Technol., 9, 5621–5636 (2016).CrossRefGoogle Scholar
  16. 16.
    I. S. Yagovkina, A. V. Polyakov, A. V. Poberovskii, and Yu. M. Timofeev, Izv. RAN, FAO, 47, No. 2, 204–207 (2011).Google Scholar
  17. 17.
    A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, M. V. Makarova, A. V. Poberovskii, and H. Imhasin, Izv. RAN, FAO, 54, No. 5, 575–583 (2018).Google Scholar
  18. 18.
    Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, J. Mol. Spectrosc., 323, 2–14 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., River Edge (2000).Google Scholar
  20. 20.
    V. F. Turchin, V. P. Kozlov, and M. S. Malkevich, Usp. Fiz. Nauk, 102, 345–386 (1970).CrossRefGoogle Scholar
  21. 21.
    M. Park, W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and M. J. Livesey, Geophys. Res.: Atm., 118, No. 4, 1964–1980 (2013).ADSGoogle Scholar
  22. 22.
    S. Montzka, B. Hall, and J. Elkins, Geophys. Res. Lett., 36, L03804 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    J. Elkins, T. Thompson, T. Swanson, J. Butler, B. Hall, S. Cummings, D. Fisher, and A. Raffo, Nature, 364, 780–783 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    S. Montzka, J. H. Butler, R. C. Myers, T. M. Thompson, T. H. Swanson, A. D. Clarke, L. T. Lock, and J. W. Elkins, Science, 272, 1318–1322 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    S. Walker, R. Weiss, and P. Salameh, J. Geophys. Res.: Oceans, 105, 14285–14296 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, Atm. Meas. Technol., No. 10, 4521–4536 (2017).Google Scholar
  27. 27.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Royr, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, J. Quant. Spectrosc. Radiat. Transf., 130, 4–50 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Polyakov
    • 1
    Email author
  • Ya. A. Virolainen
    • 1
  • M. V. Makarova
    • 1
  1. 1.St. Petersburg State University, 7-9 Universitetskaya NaberezhnayaSt. PetersburgRussia

Personalised recommendations