Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1076–1084 | Cite as

Study of the IR Spectra of the Saliva of Cancer Patients

  • L. V. Bel’skayaEmail author
  • E. A. Sarf
  • I. A. Gundyrev

Feasibility has been demonstrated in principle for the diagnosis of lung and breast cancer by subjecting saliva to Fourier transform IR spectroscopy. Statistically significant differences in the saliva of lung cancer patients are seen at 1070–1240 cm–1, while significant differences are seen throughout the entire range for breast cancer patients. The I1398/1454 and I1240/1310 ratios were determined and found to be statistically reliable for detecting cancer pathology. Correlations were found for the intensities of the absorption bands in these IR spectra with nonspecific biochemical saliva parameters, which generally characterize greater intoxication as well as suppression of the systems for antioxidant protection and the immune response. A promising research trend involves the use of the IR spectroscopy of saliva for monitoring treatment and cancer recurrence.


saliva Fourier transform IR spectroscopy oncology diagnostics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Atkinson, Jr., W. A. Colburn, V. B. DeGruttola, D. L. DeMets, G. J. Downing, D. F. Hoth, J. A. Oates, C. C. Peck, R. T. Schooley, B. A. Spilker, J. Woodcock, and S. L. Zeger, Clin. Pharmacol. Ther., 69, 89–95 (2001).CrossRefGoogle Scholar
  2. 2.
    G. M. Zubareva, V. M. Minkin, G. Ye. Bordina, I. A. Belyaeva, N. P. Lopina, S. M. Zubarev, and A. V. Kargapolov, Stomatologiya, 5, 7–10 (2009).Google Scholar
  3. 3.
    P. Seredin, D. Goloshchapov, V. Kashkarov, Y. Ippolitov, and K. Bambery, Results in Physics, 6, 315–321 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Bunaciu, Ş. Fleschin, and H. Y. AboulEnein, Rev. Roum. Chim., 60, Nos. 5–6, 415–426 (2015).Google Scholar
  5. 5.
    F. Elmi, A. F. Movaghar, M. M. Elmi, H. Alinezhad, and N. Nikbakhsh, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 187, 87–91 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    J. Depciuch, E. Kaznowska, S. Golowski, A. Koziorowska, I. Zawlik, M. Cholewa, K. Szmuc, and J. Cebulski, J. Pharm. Biomed. Anal., 143, 261–268 (2017).CrossRefGoogle Scholar
  7. 7.
    X. Wang, X. Shen, D. Sheng, X. Chen, and X. Liu, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 122, 193–197 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    X. Sun, J. Xu, Y. Zhang, and K. Sun, J. Surg. Res., 179, 33–38 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Sheng, Y. Wu, X. Wang, D. Huang, X. Chen, and X. Liu, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 116, 365–369 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    E. Kaznowska, J. Depciuch, K. Szmuc, and J. Cebulski, J. Pharm. Biomed. Anal., 134, 259–268 (2017).CrossRefGoogle Scholar
  11. 11.
    L. Dong, X. J. Sun, Z. Chao, S. Y. Zhang, J. B. Zheng, R. Gurung, J. K. Du, J. S. Shi, Y. F. Zhang, and J. G. Wu, Spectrochim. Acta A, 122, 288–294 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    D. Sheng, F. Xu, Q. Yu, T. Fang, J. Xia, S. Li, and X. Wang, J. Mol. Struct., 1099, 18–23 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, N. W. Clarke, and P. Gardner, J. Biophoton., 2, 104–113 (2009).CrossRefGoogle Scholar
  14. 14.
    E. Gazi, M. Baker, J. Dwyer, N. P. Lockyer, P. Gardner, J. H. Shanks, R. S. Reeve, C. A. Hart, N. W. Clarke, and M. D. Brown, Eur. Urology, 50, 750–761 (2006).CrossRefGoogle Scholar
  15. 15.
    Y. Liu, Y. Xu, Y. Liu, Y. Zhang, D. Wang, D. Xiu, Z. Xu, X. Zhou, J. Wu, and X. Ling, Brit. J. Surg., 98, 380–384 (2011).CrossRefGoogle Scholar
  16. 16.
    K. Gajjar, J. Trevisan, G. Owens, P. J. Keating, N. J. Wood, H. F. Stringfellow, P. L. MartinHirsch, and F. L. Martin, Analyst, 138, 3917–3926 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    J. Ollesch, M. Heinze, H. M. Heisse, T. Behrens, T. Brüning, and K. Gerwert, J. Biophotonics, 7, 216–221 (2014).CrossRefGoogle Scholar
  18. 18.
    X. Q. Zhang, Z. Xu, X. F. Ling, Y. Z. Xu, and J. G. Wu, Spectrosc. Spect. Anal., 30, 30–34 (2010).Google Scholar
  19. 19.
    J. Trevisan, P. P. Angelov, P. L. Carmichael, A. D. Scott, and F. L. Martin, Analyst, 137, 3202–3215 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    J. G. Kelly, M. N. Singh, H. F. Stringfellow, M. J. Walsh, J. M. Nicholson, F. Bahrami, K. M. Ashton, M. A. Pitt, P. L. MartinHirsch, and F. L. Martin, Cancer Lett., 274, 208–217 (2009).CrossRefGoogle Scholar
  21. 21.
    P. C. Caetano Júnior, J. FerreiraStrixino, and L. Raniero, Res. Biomed. Eng., 31, 116–124 (2015).Google Scholar
  22. 22.
    L. M. Rodrigues, T. D. Magrini, C. F. Lima, J. Scholz, H. da Silva Martinho, and J. D. Almeida, Spectrosc., 174, 124–129 (2017).Google Scholar
  23. 23.
    L. B. Bel’skaya, E. A. Sarf, and N. A. Makarova, Zh. Prikl. Spektrosk., 85, No. 3, 436–442 (2018) [J. Appl. Spectrosc., 85, No. 3, 445–451 (2018)].Google Scholar
  24. 24.
    E. Bogomolny, S. Argov, S. Mordechai, and M. Huleihel, Biochim. Biophys. Acta, 1780, No. 9, 1038–1042 (2008).CrossRefGoogle Scholar
  25. 25.
    T. Nonaka and D. T. W. Wong, The Enzymes, 42, 125–151 (2017).CrossRefGoogle Scholar
  26. 26.
    V. N. Kondratova, I. V. Botezatu, V. P. Shelepov, and A. V. Likhtenshteyn, Ros. Bioterapevt. Zh., 12, No. 3, 3–10 (2013).Google Scholar
  27. 27.
    V. Garcia, J. M. Garcia, C. Pena, J. Silva, G. Domínguez, V. Lorenzo, R. Diaz, P. Espinosa, J. G. de Sola, B. Cantos, and F. Bonilla, Cancer Lett., 263, 312–320 (2008).CrossRefGoogle Scholar
  28. 28.
    N. Miura, H. Nakamura, R. Sato, T. Tsukamoto, T. Harada, S. Takahashi, Y. Adachi, K. Shomori, A. Sano, Y. Kishimoto, H. Ito, J. Hasegawa, and G. Shiota, Cancer Sci., 97, 1366–1373 (2006).CrossRefGoogle Scholar
  29. 29.
    M. Stroun, P. Maurice, V. Vasioukhin, J. Lyautey, C. Lederrey, F. Lefort, A. Rossier, X. Q. Chen, and P. Anker, Ann. N. Y. Acad. Sci., 906, 161–168 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    H. Schwarzenbach, C.AlixPanabieres, I. Muller, N. Letang, J. P. Vendrelli, X. Rebillard, and K. Pantel, Clin. Cancer Res., 15, 1032–1038 (2009).CrossRefGoogle Scholar
  31. 31.
    G. Jian, Z. Songwen, Z. Ling, D. Qinfang, Z. Jie, T. Liang, and Z. Caicun, J. Cancer Res. Clin. Oncol., 136, 1341–1346 (2010).CrossRefGoogle Scholar
  32. 32.
    G. I. Dovbeshko, V. I. Chegel, N. Y. Gridina, O. P. Repnytska, Y. M. Shirshov, V. P. Tryndiak, I. M. Todor, and G. I. Solyanik, Biopolymers, 67, No. 6, 470–486 (2002).CrossRefGoogle Scholar
  33. 33.
    S. Argov, R. K. Sahu, E. Bernshtain, A. Salam, G. Shohat, U. Zelig, and S. Mordechai, Biopolymers, 75, No. 5, 384–392 (2004).CrossRefGoogle Scholar
  34. 34.
    Y. Yang, J. SuleSuso, G. D. Sockalingum, G. Kegelaer, M. Manfait, and A. J. El Haj, Biopolymers, 78, No. 6, 311–317 (2005).CrossRefGoogle Scholar
  35. 35.
    Q. B. Li, X. J. Sun, Y. Z. Xu, L. M. Yang, Y. F. Zhang, S. F. Weng, and J. S. Shi, Clin. Chem., 51, No. 2, 346–350 (2005).CrossRefGoogle Scholar
  36. 36.
    Z. Ganim, H. S. Chung, A. W. Smith, L. P. Defl ores, K. C. Jones, and A. Tokmakoff, Acc. Chem. Res., 41, No. 3, 432–441 (2008).CrossRefGoogle Scholar
  37. 37.
    C. P. Schultz, Technol. Cancer Res. Treatment, 1, No. 2, 95–104 (2002).CrossRefGoogle Scholar
  38. 38.
    C. Petibois and G. Deleris, Trends Biotechnol., 24, No. 10, 455–462 (2006).CrossRefGoogle Scholar
  39. 39.
    S. Zhou, Z. Xu, X. F. Ling, Q. B. Li, Y. Z. Xu, L. Zhang, H. M. Zhao, L. X. Wang, K. Y. Hou, X. S. Zhou, and J. G. Wu, Chin. J. Oncol., 28, No. 7, 512–514 (2006).Google Scholar
  40. 40.
    L. V. Bel’skaya, V. K. Kosenok, and Zh. Massard, Diagnostics, 6, No. 4, 39 (2016).CrossRefGoogle Scholar
  41. 41.
    L. V. Bel’skaya, V. K. Kosenok, and Zh. Massard, Sovrem. Tekhnol. Med., 10, No. 2, 110–117 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. V. Bel’skaya
    • 1
    Email author
  • E. A. Sarf
    • 1
  • I. A. Gundyrev
    • 2
  1. 1.Omsk State Pedagogical University14 Naberezhnaya TukhachevskogoOmskRussia
  2. 2.TriSoftOmskRussia

Personalised recommendations