Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1044–1049 | Cite as

Rapid Discrimination of High-Quality Watermelon Seeds by Multispectral Imaging Combined with Chemometric Methods

  • Wei Liu
  • Xue Xu
  • Changhong LiuEmail author
  • Lei Zheng
Article
  • 1 Downloads

This study focuses on the feasibility of nondestructive discrimination of high-quality watermelon seeds with a multispectral imaging system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM), back propagation neural network (BPNN), and random forest (RF) were applied to determine the seed quality. The results demonstrate that both the spectral and the morphological features are essential for discrimination of the quality of watermelon seeds. Clear differences between high-quality watermelon seeds and other watermelon seeds including dead seeds and low-vigor seeds were visualized, and an excellent classification (with accuracies of 92% in the LS-SVM model for Julong and 91% in the RF model for Xiali, respectively) was achieved. These results indicate that multispectral imaging could be used for rapid and efficient nondestructive quality control of watermelon seeds.

Keywords

watermelon seeds multispectral imaging nondestructive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guo, J. Zhang, H. Sun, J. Salse, and W. J. Lucas, Nat. Genet., 45, 51–58 (2012).CrossRefGoogle Scholar
  2. 2.
    Perkins-Veazie, P. Collins, J. K. Davis, and A. R. Roberts, J. Agric. Food Chem., 54, 2593–2597 (2006).CrossRefGoogle Scholar
  3. 3.
    J. K. Collins, G. Y. Wu, P. Perkinsveazie, K. Spears, P. L. Claypool, and R. A. Baker, Nutr., 23, 261–266 (2007).CrossRefGoogle Scholar
  4. 4.
    D. S. Egel, C. Gunter, and R. Martyn, Hortscience, 43, 1410–1414 (2008).CrossRefGoogle Scholar
  5. 5.
    K. K. Moorthy, P. Babu, M. Sreedhar, V. S. A. K. Sama, P. N. Kumar, S. M. Balachandran, and R. M. Sundaram, Seed Sci. Technol., 39, 282–292 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Ye, Y. Wang, D. Huang, J. Li, Y. Gong, L. Xu, and L. Liu, Sci. Hort-Amsterdam, 155, 92–96 (2013).CrossRefGoogle Scholar
  7. 7.
    M. D. Sánchez-Yélamo, Seed Sci. Technol., 34, 297–306 (2006).CrossRefGoogle Scholar
  8. 8.
    V. N. Soares, S. G. Elias, G. I. Gadotti, A. E. Garay, and F. A. Villela, Crop Sci., 56, 707–715 (2016).CrossRefGoogle Scholar
  9. 9.
    E. Noli, S. Conti, M. Maccaferri, and M. C. Sanguineti, Seed Sci. Technol., 27, 1–10 (1999).Google Scholar
  10. 10.
    N. Shetty, T. G. Min, R. Gislum, M. Olesen, and B. Boelt, J. Near Infrared Spectrosc., 19, 451 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    S. S. Shin, E. J. Shin, D. P. Sang, and K. S. Lee, Can. J. Civil. Eng., 16, 538–546 (2012).Google Scholar
  12. 12.
    C. Mo, J. Lim, K. Lee, S. Kang, M. S. Kim, and G. Kim, J. Biosyst. Eng., 38, 318–326 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Ambrose, S. Lohumi, W. H. Lee, and B. K. Cho, Sensor Actuator B: Chem., 224, 500–506 (2016).CrossRefGoogle Scholar
  14. 14.
    C. Mo, M. S. Kim, J. Lim, K. Lee, G. Kim, and B. K. Cho, Trans. ASABE, 58, 959–968 (2015)Google Scholar
  15. 15.
    Y. Z. Feng and D. W. Sun, Crc. Crit. Rev. Food Sci. Nutr., 52, 1039–1058 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, J. Food Eng., 118, 157–171 (2013).CrossRefGoogle Scholar
  17. 17.
    F. A. E. Hahn, Biosyst. Eng., 81, 147–155 (2002).CrossRefGoogle Scholar
  18. 18.
    M. M. Løkke, H. F. Seefeldt, T. Skov, and M. Edelenbos, Posthavrvest Biol. Technol., 75, 86–95 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Liu, W. Liu, W. Chen, J. Yang, and L. Zheng, Food Chem., 173, 482–488 (2015).CrossRefGoogle Scholar
  20. 20.
    T. C. Pearson and D. T. Wicklow, Trans. ASABE, 49, 1235–1245 (2006).CrossRefGoogle Scholar
  21. 21.
    A. I. Ropodi, D. E. Pavlidis, F. Mohareb, E. Z. Panagou, and G. J. Nychas, Food Res. Int., 67, 12–18 (2015).CrossRefGoogle Scholar
  22. 22.
    A. I. Ropodi, E. Z. Panagou, and G. J. E. Nychas, Food Control, 73, 57–63 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Liu, W. Liu, X. Lu, W. Chen, J. Yang, and L. Zheng, Food Chem., 153, 87–93 (2014).CrossRefGoogle Scholar
  24. 24.
    C. Cortes and V. Vapnik, Mach. Learn., 20, 273–297 (1995).Google Scholar
  25. 25.
    O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, and J. P. Huvenne, Chemometer Intell. Lab. Syst., 96, 27–33 (2009).CrossRefGoogle Scholar
  26. 26.
    U. Bradter and T. J. Thom, J. Appl. Ecol., 48, 1057–1065 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Liu, M. Wang, J. Wang, and D. Li, Sensor Actuator B: Chem., 177, 970–980 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.Intelligent Control and Compute Vision LabHefei UniversityHefeiChina
  3. 3.Rice Research InstituteAnhui Academy of Agricultural SciencesHefeiChina

Personalised recommendations