Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1037–1043 | Cite as

Signals of Isotopomers in 13C NMR Spectra of Polyisoprene Rubbers

  • N. MakhiyanovEmail author
Article
  • 2 Downloads

Analysis of 13C-satellites was carried out in the 13C NMR spectra of isoprene rubbers with a natural content of 13C carbon isotope. 13C-satellites are the signals caused by the one-bond spin–spin coupling of 13C nuclei. The spin–spin coupling 1J(13C–13C) constants, as well as the magnitude of the effect of the isotopic substitution 1Δδ13C(13/12C), were measured under magnetic shielding of 13C nuclei. The results indicate that the configurational and local conformational structure of natural and synthetic isoprene rubbers is identical.

Keywords

NMR spectra 13C-satellites 13С–13С spin-spin coupling constant effect of isotopic (12С/13С) substitution cis-1,4-polyisoprene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Tanaka and H. Sato, Polymer, 17, No. 2, 113–116 (1976).CrossRefGoogle Scholar
  2. 2.
    W. Gronski, N. Murayama, H. J. Cantow, and T. Miyamoto, Polymer, 17, No. 4, 358–360 (1976).CrossRefGoogle Scholar
  3. 3.
    M. Morese-Seguela, M. St. Jacques, J. M. Renaud, and J. Prudhomme, Macromolecules, 10, No. 2, 431–432 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    H. Sato, A. Ono, and Y. Tanaka, Polymer, 18, No. 6, 580–586 (1977).CrossRefGoogle Scholar
  5. 5.
    A. S. Khatchaturov, E. R. Dolinskaya, L. K. Prozenko, E. L. Abramenko, and V. A. Kormer, Polymer, 18, No. 9, 871–877 (1977).CrossRefGoogle Scholar
  6. 6.
    D. Xie and Q. Sun, Chin. J. Polym. Sci., 5, No. 2, 114–119 (1987).Google Scholar
  7. 7.
    D. Xie and Q. Sun, Acta Polym. Sin., No. 1, 1–6 (1988).Google Scholar
  8. 8.
    Z. W. Qiu, X. Chen, B. Sun, Z. Zhou, and F. Wang, J. Macromol. Sci., A25, No. 2, 127–141 (1988).CrossRefGoogle Scholar
  9. 9.
    N. Makhiyanov, I. G. Akhmetov, and A. M. Vagizov, Polym. Sci., А54, No. 12, 942–949 (2012).Google Scholar
  10. 10.
    V. A. Rozentsvet, N. A. Korovina, O. A. Stotskaya, M. G. Kuznetsova, F. Peruch, and S. V. Kostjuk, J. Polym. Sci., A: Polym. Chem., 54, 2430–2442 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    N. Makhiyanov, Polym. Sci., А59, No. 2, 269–279 (2017).Google Scholar
  12. 12.
    G. J. Ray and C. M. Szabo, eMagRes, 2, No. 2, 193–204 (2013).Google Scholar
  13. 13.
    K. Hatada, T. Kitayama, J. Terawaki, Y. Tanaka, and H. Sato, Polym. Bull., 2, No. 11, 791–797 (1980).CrossRefGoogle Scholar
  14. 14.
    G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys., A729, No. 1, 3–128 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    L. B. Krivdin and E. W. Della, Progr. NMR Spectr., 23, No. 4, 301–610 (1991).CrossRefGoogle Scholar
  16. 16.
    G. Becher, W. Liittke, and G. Schrumpf, Angew. Chem., 85, No. 8, 357–358 (1973).CrossRefGoogle Scholar
  17. 17.
    Th. Fäcke and S. Berger, J. Am. Chem. Soc., 117, No. 37, 9547–9550 (1995).CrossRefGoogle Scholar
  18. 18.
    Ch.-J. Park, G.-Ch. Han, and S.-G. Lee, Bull. Korean Chem. Soc., 21, No. 11, 1159–1161 (2000).Google Scholar
  19. 19.
    A. V. Chertkov, A. K. Shestakova, and V. A. Chertkov, Chem. Heterocycl. Comp., 48, No. 3, 412–421 (2012).CrossRefGoogle Scholar
  20. 20.
    W. Gombler, J. Am. Chem. Soc., 104, No. 24, 6616–6620 (1982).CrossRefGoogle Scholar
  21. 21.
    C. J. Jameson and H. J. Osten, Ann. Rep. NMR Spectr., 17, No. 1, 1–78 (1986).Google Scholar
  22. 22.
    P. E. Hansen, Progr. NMR Spectr., 20, No. 3, 207–255 (1988).CrossRefGoogle Scholar
  23. 23.
    L. B. Krivdin and G. A. Kalabin, Progr. NMR Spectrosc., 21, Nos. 4–5, 293–448 (1989).CrossRefGoogle Scholar
  24. 24.
    K. Kamienska-Trela, Ann. Rep. NMR Spectr., 30, 131–230 (1995).CrossRefGoogle Scholar
  25. 25.
    M. Barfield, I. Burfitt, and D. Doddrell, J. Am. Chem. Soc., 97, No. 10, 2631–2634 (1975).CrossRefGoogle Scholar
  26. 26.
    J. E. Mark, J. Am. Chem. Soc., 88, No. 19, 4354–4359 (1966).CrossRefGoogle Scholar
  27. 27.
    Y. Abe and P. Flory, Macromolecules, 4, No. 2, 230–237 (1971).ADSCrossRefGoogle Scholar
  28. 28.
    N. Makhiyanov, M. M. Minnegaliev, and R. M. Aminova, Polym. Sci., A58, No. 2, 121–129 (2016).Google Scholar
  29. 29.
    Y. Tanaka and L. Tarachiwin, Rubb. Chem. Technol., 82, No. 3, 283–314 (2009).CrossRefGoogle Scholar
  30. 30.
    T. Kitaura, M. Kobayashi, L. Tarachiwin, H. Kum-ourm, A. Matsuura, K. Fushihara, and K. Ute, Macromol. Chem. Phys., 219, No. 3, 1700331 (2018).CrossRefGoogle Scholar
  31. 31.
    N. Makhiyanov and A. S. Khatchaturov, Polym. Sci., A52, No. 2, 209–219 (2010).Google Scholar
  32. 32.
    L. J. Fetters, D. J. Lohsey, and R. H. Colby, in: J. E. Mark (Ed.), Physical Properties of Polymers Handbook, Springer, New York (2007), pp. 447–454.CrossRefGoogle Scholar
  33. 33.
    A. Bax, R. Freeman, and S. P. Kempsell, J. Am. Chem. Soc., 102, No. 14, 4849–4851 (1980).CrossRefGoogle Scholar
  34. 34.
    T. Jézéquel, V. Joubert, P. Giraudeau, G. S. Remaud, and S. Akoka, Magn. Reson. Chem., 55, No. 2, 77–90 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Public Joint Stock Company “Nizhnekamskneftekhim”NizhnekamskRussia

Personalised recommendations