Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1029–1036 | Cite as

Classification of Pathogenic Bacteria Using Near-Infrared Diffuse Reflectance Spectroscopy

  • Pin WangEmail author
  • Jie Wang
  • Lirui Wang
  • Meifang Yin
  • Yongming Li
  • Jun WuEmail author
Article

Near-infrared diffuse reflectance spectroscopy is proposed for the classification of pathogenic bacteria using optical properties. The spectrally resolved data are analyzed using a diffuse reflectance model to extract the local optical properties, including the reduced scattering coefficient and absorption coefficient. The optical properties at different wavelengths form the feature set. A particle swarm optimization-based support vector machine is used to classify seven categories of bacteria. The experimental results demonstrate the feasibility of the method for the rapid and noninvasive classification of pathogenic bacteria using optical properties.

Keywords

pathogenic bacteria optical properties near-infrared diffuse reflectance spectroscopy particle swarm optimization support vector machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Q. Nguyen, C. Crouzet, T. Mai, K. Riola, D. Uchitel, L. H. Liaw, N. Bernal, A. Ponticorvo, B. Choi, and A. J. Durkin, J. Biomed. Opt., 18, 66010 (2013).Google Scholar
  2. 2.
    S. Demesquita, L. H. Aulick, and K. A. Burgess, Physiol. Behav., 51, 363–369 (1992).CrossRefGoogle Scholar
  3. 3.
    J. P. Barret and D. N. Herndon, Plast. Reconstr. Surg., 111, 744–750 (2003).CrossRefGoogle Scholar
  4. 4.
    J. L. de Macedo and J. B. Santos, Mem. Inst. Oswaldo Cruz, 100, 535–539 (2005).CrossRefGoogle Scholar
  5. 5.
    B. R. Sharma, Infect. Dis. Clin. N. Am., 21, 745–759 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Ahmad, H. S. Shahid, K. M. Ibrahim, and S. A. Malik, Ann. Burns Fire Disasters., 19, 18 (2006).Google Scholar
  7. 7.
    J. He, Z. Liu, Y. Xiao, X. Fan, J. Yan, and H. P. Liang, Burns Trauma, 2, 106–113 (2014).CrossRefGoogle Scholar
  8. 8.
    J. G. Hughes, E. A. Vetter, R. Patel, C. D. Schleck, S. Harmsen, L. T. Turgeant, and F. R. Cockerill III, J. Clin. Microbiol., 39, 4468–4471 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Velay, F. Schramm, J. Gaudias, B. Jaulhac, and P. Riegel, Diagn. Microbiol. Infect. Dis., 68, 83–85 (2010).CrossRefGoogle Scholar
  10. 10.
    M. A. Jensen, J. A. Webster, and N. Straus, Appl. Environ. Microbiol., 59, 945–952 (1993).Google Scholar
  11. 11.
    H. Liu, W. Liu, X. Yang, X. Zhou, and D. Xing, Anal. Chem., 88, 10191–10197 (2016).CrossRefGoogle Scholar
  12. 12.
    J. Shen, Y. Guan, J. Zhang, J. Tang, X. Lu, and C. Zhang, Exp. Ther. Med., 7, 496–500 (2014).CrossRefGoogle Scholar
  13. 13.
    N. Massadivanir, G. Shtenberg, and E. Segal, J. Vis. Exp., 81, e50805 (2013).Google Scholar
  14. 14.
    T. Belal, K. Romdhane, B. Jean-Louis, B. Tahar, D. Eric, and L. Françoise, Anal. Methods, 3, 133–143 (2011).CrossRefGoogle Scholar
  15. 15.
    L. E. Rodriguezsaona, F. M. Khambaty, F. S. Fry, and E. M. Calvey, J. Agric. Food Chem., 49, 574–579 (2001).CrossRefGoogle Scholar
  16. 16.
    K. Maquelin, C. Kirschner, L. P. Choosmith, N. A. Ngothi, V. T. Van, M. Stämmler, H. P. Endtz, H. A. Bruining, D. Naumann, and G. J. Puppels, J. Clin. Microbiol., 41, 324–329 (2003).CrossRefGoogle Scholar
  17. 17.
    A. C. Samuels, A. P. Snyder, D. K. Emge, D. Amant, J. Minter, M. Campbell, and A. Tripathi, Appl. Spectrosc., 63, 14–24 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    P. Żarnowiec, Ł. Lechowicz, G. Czerwonka, and W. Kaca, Curr. Med. Chem., 22, 1710–1718 (2015).Google Scholar
  19. 19.
    A. D. S. Marques, J. T. N. Nicácio, T. A. Cidral, M. C. N. D. Melo, and K. M. G. D. Lima, J. Microbiol. Methods, 93, 90–94 (2013).CrossRefGoogle Scholar
  20. 20.
    M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendronfitzpatrick, and N. Ramanujam, Opt. Express, 15, 7863–7875 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinsond, E. D. Hirleman, and A. K. Bhunia, Biosens. Bioelectron., 24, 1685–1692 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. Jo, J. Jung, M. H. Kim, H. Park, S. J. Kang, and Y. K. Park, Opt. Express, 23, 15792–15805 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, D. J. Van, and S. F. Michael, Appl. Opt., 38, 6628 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    B. Acha, C. Serrano, S. Palencia, and J. J. Murillo, Proc. SPIE, 5370, 1018–1025 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    Q. H. He, J. Yan, Y. Shen, Y. T. Bi, G. H. Ye, F. C. Tian, and Z. G. Wang, Intell. Autom. Soft Comp., 18, 967–979 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Communication EngineeringChongqing UniversityChongqingChina
  2. 2.Institute of Burn Research, Southwest HospitalThird Military Medical UniversityChongqingChina
  3. 3.The First Affiliated Hospital Sun Yat-Sen University, Department of BurnsGuangzhouChina

Personalised recommendations