Differentiation of the Contribution of Velocity-Changing Gas-Particle Collisions to Attenuation of the Stimulated Photon Echo Response
Article
First Online:
The effect of velocity-changing gas-particle collisions on the intensity of the stimulated photon echo response is investigated. The intensity is influenced most by such collisions if the exciting-pulse wave vectors are nonparallel. An approximation of the intensity of the stimulated photon echo response as a function of the time interval between the second and third exciting laser pulses is proposed and enables differentiation of the contribution of velocity-changing particle collisions to attenuation of the response. The results are of interest for optical coherent echo spectroscopy.
Keywords
spectral diffusion stimulated photon echo inhomogeneous broadening velocity-changing particle collisionPreview
Unable to display preview. Download preview PDF.
References
- 1.R. L. Shoemaker, in: J. I. Steinfeld (Ed.), Laser and Coherence Spectroscopy, Academic Press, New York, London (1978).Google Scholar
- 2.É. A. Manykin and V. V. Samartsev, Optical Echo Spectroscopy [in Russian], Nauka, Moscow (1984).Google Scholar
- 3.I. V. Evseev, N. N. Rubtsova, and V. V. Samartsev, Photon Echo and Data Locking in Gases [in Russian], KGU, Kazan (2009).Google Scholar
- 4.M. V. Evseev, I. V. Ermachenko, and V. V. Samartsev, Depolarizing Collisions in Nonlinear Thermodynamics [in Russian], Nauka, Moscow (1992).Google Scholar
- 5.N. N. Rubtsova, L. S. Vasilenko, and E. B. Khvorostov, Zh. Eksp. Teor. Fiz., 116, No. 1, 47–56 (1999).Google Scholar
- 6.N. N. Rubtsova, V. N. Ishchenko, E. B. Khvorostov, S. A. Kochubei, V. A. Reshetov, and I. V. Yevseyev, Phys. Rev. A, 84, No. 3, 033413/1–033413/11 (2011).ADSCrossRefGoogle Scholar
- 7.E. N. Akhmedshina, L. A. Nefed′ev, and G. I. Garnaeva, Zh. Prikl. Spektrosk., 84, No. 2, 322–326 (2017) [E. N. Ahmedshina, L. A. Nefediev, and G. I. Garnaeva, J. Appl. Spectrosc., 84, 337–341 (2017)].Google Scholar
- 8.E. N. Akhmedshina, L. A. Nefed′ev, and G. I. Garnaeva, Zh. Prikl. Spektrosk., 82, No. 4, 632–635 (2015) [E. N. Ahmedshina, L. A. Nefediev, and G. I. Garnaeva, J. Appl. Spectrosc., 82, 669–672 (2015)].Google Scholar
- 9.L. A. Nefediev, Opt. Spektrosk., 52, No. 6, 981–986 (1982).Google Scholar
- 10.L. A. Nefediev, Opt. Spektrosk., 59, No. 4, 841–846 (1985).Google Scholar
- 11.L. A. Nefediev and G. I. Khakimzyanova, Opt. Spektrosk., 98, No. 1, 41–45 (2005).ADSGoogle Scholar
- 12.L. A. Nefediev, A. R. Sakhbieva, and E. I. Nizamova, J. Russ. Laser Res., 34, No. 4, 331–335 (2013).CrossRefGoogle Scholar
- 13.A. Flusberg, Opt. Commun., 29, No. 1, 123–125 (1979).ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019