Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1017–1021 | Cite as

Differentiation of the Contribution of Velocity-Changing Gas-Particle Collisions to Attenuation of the Stimulated Photon Echo Response

  • E. N. AhmedshinaEmail author
  • L. A. Nefediev
  • Y. A. Nefedyev
  • G. I. Garnaeva
  • N. E. Zamaliev
Article

The effect of velocity-changing gas-particle collisions on the intensity of the stimulated photon echo response is investigated. The intensity is influenced most by such collisions if the exciting-pulse wave vectors are nonparallel. An approximation of the intensity of the stimulated photon echo response as a function of the time interval between the second and third exciting laser pulses is proposed and enables differentiation of the contribution of velocity-changing particle collisions to attenuation of the response. The results are of interest for optical coherent echo spectroscopy.

Keywords

spectral diffusion stimulated photon echo inhomogeneous broadening velocity-changing particle collision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Shoemaker, in: J. I. Steinfeld (Ed.), Laser and Coherence Spectroscopy, Academic Press, New York, London (1978).Google Scholar
  2. 2.
    É. A. Manykin and V. V. Samartsev, Optical Echo Spectroscopy [in Russian], Nauka, Moscow (1984).Google Scholar
  3. 3.
    I. V. Evseev, N. N. Rubtsova, and V. V. Samartsev, Photon Echo and Data Locking in Gases [in Russian], KGU, Kazan (2009).Google Scholar
  4. 4.
    M. V. Evseev, I. V. Ermachenko, and V. V. Samartsev, Depolarizing Collisions in Nonlinear Thermodynamics [in Russian], Nauka, Moscow (1992).Google Scholar
  5. 5.
    N. N. Rubtsova, L. S. Vasilenko, and E. B. Khvorostov, Zh. Eksp. Teor. Fiz., 116, No. 1, 47–56 (1999).Google Scholar
  6. 6.
    N. N. Rubtsova, V. N. Ishchenko, E. B. Khvorostov, S. A. Kochubei, V. A. Reshetov, and I. V. Yevseyev, Phys. Rev. A, 84, No. 3, 033413/1–033413/11 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    E. N. Akhmedshina, L. A. Nefed′ev, and G. I. Garnaeva, Zh. Prikl. Spektrosk., 84, No. 2, 322–326 (2017) [E. N. Ahmedshina, L. A. Nefediev, and G. I. Garnaeva, J. Appl. Spectrosc., 84, 337–341 (2017)].Google Scholar
  8. 8.
    E. N. Akhmedshina, L. A. Nefed′ev, and G. I. Garnaeva, Zh. Prikl. Spektrosk., 82, No. 4, 632–635 (2015) [E. N. Ahmedshina, L. A. Nefediev, and G. I. Garnaeva, J. Appl. Spectrosc., 82, 669–672 (2015)].Google Scholar
  9. 9.
    L. A. Nefediev, Opt. Spektrosk., 52, No. 6, 981–986 (1982).Google Scholar
  10. 10.
    L. A. Nefediev, Opt. Spektrosk., 59, No. 4, 841–846 (1985).Google Scholar
  11. 11.
    L. A. Nefediev and G. I. Khakimzyanova, Opt. Spektrosk., 98, No. 1, 41–45 (2005).ADSGoogle Scholar
  12. 12.
    L. A. Nefediev, A. R. Sakhbieva, and E. I. Nizamova, J. Russ. Laser Res., 34, No. 4, 331–335 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Flusberg, Opt. Commun., 29, No. 1, 123–125 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Ahmedshina
    • 1
    Email author
  • L. A. Nefediev
    • 1
  • Y. A. Nefedyev
    • 1
  • G. I. Garnaeva
    • 1
  • N. E. Zamaliev
    • 1
  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations