Photochemical Processes in Molecular Polymethine Dye Probes in the Presence of Bile Salts
- 3 Downloads
Primary photochemical processes in polymethine dye probes 3,3′-di(γ-sulfopropyl)-4,5,4′,5′-dibenzo-9-ethylthiacarbocyanine betaine (DEC) and 3,3′,9-trimethylthiacarbocyanine iodide (Cyan 2) in micellar systems of bile-acid salts (BASs) sodium cholate, deoxycholate, and taurocholate and sodium dodecyl sulfate (SDS) as a reference are studied by flash photolysis. Signals due to photoisomerization of dye trans-isomers and dark reverse isomerization of the resulting cis-photoisomers are observed during pulse photolysis of air-saturated aqueous dye solutions in the presence of BAS and SDS micelles. The lifetimes of the photoisomers are 60–190 μs. Pulse photolysis of Cyan 2 and DEC solutions without oxygen and with BAS and SDS micelles induced photoisomerization and transition of the dyes into an excited triplet state followed by the reverse transition (intersystem crossing) into the initial singlet state. Triplet–triplet absorption spectra of these dyes isomers in polar (EtOH, i-PrOH) and nonpolar (dioxane) solvents were obtained for comparison using triplet–triplet energy transfer from anthracene. The conclusion was drawn that the photochemical behavior of the dyes in BAS and SDS micellar systems were similar.
Keywords
surfactants micelle bile-acid salts polymethine dye probes trans–cis photoisomerization triplet statePreview
Unable to display preview. Download preview PDF.
References
- 1.J. T. McPhee, E. Scott, N. E. Levinger, and A. Van Orden, J. Phys. Chem. B, 115, 9585–9592 (2011).Google Scholar
- 2.M. I. Viseu, A. S. Tatikolov, R. F. Correia, and S. M. B. Costa, J. Photochem. Photobiol., A, 280, 54–62 (2014).Google Scholar
- 3.F. Moyano, S. S. Quintana, R. D. Falcone, J. J. Silber, and N. M. Correa, J. Phys. Chem. B, 113, 4284–4292 (2009).Google Scholar
- 4.S. S. Quintana, F. Moyano, R. D. Falcone, J. J. Silber, and N. M. Correa, J. Phys. Chem. B, 113, 6718–6724 (2009).Google Scholar
- 5.A. K. Chibisov, V. I. Prokhorenko, and H. Gorner, Chem. Phys., 250, 47–60 (1999).CrossRefGoogle Scholar
- 6.L. S. Atabekyan and A. K. Chibisov, Khim. Vys. Energ., 41, 122–128 (2007) [L. S. Atabekyan and A. K. Chibisov, High Energy Chem., 41, 91–96 (2007)].Google Scholar
- 7.A. S. Tatikolov and S. M. B. Costa, Photochem. Photobiol. Sci., 1, 211–218 (2002).CrossRefGoogle Scholar
- 8.A. Datta, D. Mandal, S. K. Pal, and K. Bhattacharyya, Chem. Phys. Lett., 278, 77–82 (1997).ADSCrossRefGoogle Scholar
- 9.S. Mukhopadhyay and U. Maitra, Curr. Sci., 87, 1666–1683 (2004).Google Scholar
- 10.G. Li and L. B. McGown, J. Phys. Chem., 98, 13711–13719 (1994).Google Scholar
- 11.K. Matsuoka and Y. Moroi, Biochim. Biophys. Acta, 1580, 189–199 (2002).CrossRefGoogle Scholar
- 12.R. Ninomiya, K. Matsuoka, and Y. Moroi, Biochim. Biophys. Acta, 1634, 116–125 (2003).CrossRefGoogle Scholar
- 13.K. Matsuoka, M. Suzuki, C. Honda, K. Endo, and Y. Moroi, Chem. Phys. Lipids, 139, 1–10 (2006).CrossRefGoogle Scholar
- 14.A. Djavanbakht, K. M. Kale, and R. Zana, J. Colloid Interface Sci., 59, 139–148 (1977).ADSCrossRefGoogle Scholar
- 15.B. Lindman, N. Kamenka, H. Fabre, J. Ulmius, and T. Wieloch, J. Colloid Interface Sci., 73, 556–565 (1980).ADSCrossRefGoogle Scholar
- 16.A. S. Tatikolov, P. G. Pronkin, and I. G. Panova, Spectrochim. Acta, A, Spectral-fluorescent study of the interaction of polymethine dye probes with biological surfactants — bile salts, in press.Google Scholar
- 17.I. G. Panova, N. P. Sharova, S. B. Dmitrieva, R. A. Poltavtseva, G. T. Sukhikh, and A. S. Tatikolov, Anal. Biochem., 361, 183–189 (2007).CrossRefGoogle Scholar
- 18.A. S. Tatikolov, T. M. Akimkin, A. S. Kashin, and I. G. Panova, Khim. Vys. Energ., 44, 252–255 (2010) [A. S. Tatikolov, T. M. Akimkin, A. S. Kashin, and I. G. Panova, High Energy Chem., 44, 224–227 (2010)].Google Scholar
- 19.A. S. Tatikolov and I. G. Panova, Khim. Vys. Energ., 48, 116–122 (2014) [A. S. Tatikolov and I. G. Panova, High Energy Chem., 48, 87–92 (2014)].Google Scholar
- 20.T. M. Akimkin, A. S. Tatikolov, and S. M. Yarmoluk, Khim. Vys. Energ., 45, 252–259 (2011) [T. M. Akimkin, A. S. Tatikolov, and S. M. Yarmoluk, High Energy Chem., 45, 222–228 (2011)].Google Scholar
- 21.A. S. Tatikolov and S. M. B. Costa, Chem. Phys. Lett., 346, 233–240 (2001).ADSCrossRefGoogle Scholar
- 22.A. K. Chibisov, G. V. Zakharova, and H. Gorner, Phys. Chem. Chem. Phys., 1, 1455–1460 (1999).CrossRefGoogle Scholar
- 23.V. Khimenko, A. K. Chibisov, and H. Gorner, J. Phys. Chem. A, 101, 7304–7310 (1997).Google Scholar
- 24.A. S. Tatikolov and S. M. B. Costa, Chem. Phys. Lett., 440, 73–78 (2007).ADSCrossRefGoogle Scholar
- 25.R. Humphry-Baker, M. Gratzel, and R. Steiger, J. Am. Chem. Soc., 102, 847–848 (1980).Google Scholar
- 26.M. Y. Anikovsky, A. S. Tatikolov, and V. A. Kuzmin, Int. J. Photoenergy, 1, 35–39 (1999).CrossRefGoogle Scholar
- 27.M. Yu. Anikovskii, A. S. Tatikolov, L. A. Shvedova, and V. A. Kuz′min, Izv. Akad. Nauk, Ser. Khim., No. 7, 1134–1137 (2001) [M. Y. Anikovsky, A. S. Tatikolov, L. A. Shvedova, and V. A. Kuzmin, Russ. Chem. Bull., Int. Ed., 50, No. 7, 1190–1193 (2001)].Google Scholar
- 28.A. S. Tatikolov, T. M. Akimkin, P. G. Pronkin, and S. M. Yarmoluk, Chem. Phys. Lett., 556, 287–291 (2013).ADSCrossRefGoogle Scholar