Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photophysical Properties of a Composite Based on Polyepoxypropylpyridobenzothiazole with the Squarylium Dye

  • 15 Accesses

The photoconductive and photovoltaic properties of fi lm composites based on the new oligomer polyepoxypropylpyridobenzothiazole were compared with the known poly-N-epoxypropylcarbazole, which contains the squarylium dye as a photoconductivity sensitizer. It was found that these composites have hole-type photoconductivity, and the internal photoelectric effect is determined by the photogeneration of charge carriers from dye molecules and by transport of the holes along the donor fragments of the polymer matrix. The photoconductivity and photovoltaic response increase in the transition to the new oligomer with the more effi cient conjugation system in the donor fragments.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. Yoshizawa (Ed.), Handbook of Optical Metrology: Principles and Applications, 2nd еd., CRC Press (2017)

  2. 2.

    K. Leo (Ed.), Elementary Processes in Organic Photovoltaics, Springer (2016).

  3. 3.

    P. Kumar. Organic Solar Cells: Device Physics, Processing, Degradation, and Prevention, CRC Press (2016).

  4. 4.

    P. Deng, C. H. Y. Ho, Y. Lu, H.-W. Li, S.-W. Tsang, S. K. Soc, and B. S. Ong, Chem. Commun., 53, 3249–3252 (2017).

  5. 5.

    V. A. Milichko, A. S. Shalin, I. S. Mukhin, A. E. Kovrov, A. A. Krasilin, A. V. Vinogradov, P. A. Belov, and C. R. Simovskii, UFN, 186, No. 8, 801–852 (2016). [V. A. Milichko, A. S. Shalin, I. S. Mukhin, A. E. Kovrov, A. A. Krasilin, A. V. Vinogradov, P. A. Belov, and C. R. Simovskii, Sov. Phys. Usp., 59, No. 8, 727–772 (2016)].

  6. 6.

    E. A. Knyazeva and O. A. Rakitin, Usp. Khim., 85, No. 10, 1146–1183 (2016) [E. A. Knyazeva and O. A. Rakitin, Russ. Chem. Rev., 85, No. 10, 1146–1183 (2016)].

  7. 7.

    V. V. Rakitin and G. F. Novikov, Usp. Khim., 86, No. 2, 99–112 (2017) [V. V. Rakitin and G. F. Novikov, Russ. Chem. Rev., 86, No. 2, 99–112 (2017)].

  8. 8.

    G. Ding, J. Yuan, F. Jin, Y. Zhang, L. Han, X. Ling, H. Zhao, and W. Ma, Nano Energy, 36, 356–365 (2017).

  9. 9.

    E. V. Mokrinskaya, S. L. Studzinsky, V. A. Pavlov, N. G. Chuprina, V. V. Kravchenko, A. I. Marinin, L. S. Tonkopieva, I. I. Davidenko, and N. A. Davidenko, Khim. Vys. Énerg., 51, No. 4, 278–283 (2017) [E. V. Mokrinskaya, S. L. Studzinsky, V. A. Pavlov, N. G. Chuprina, V. V. Kravchenko, A. I. Marinin, L. S. Tonkopieva, I. I. Davidenko, and N. A. Davidenko, High Energy Chem., 51, No. 4, 263–268 (2017)].

  10. 10.

    N. A. Davidenko, I. I. Davidenko, S. L. Studzinsky, L. I. Kostenko, A. A. Ishchenko, E. V. Mokrinskaya, and L. S. Tonkopieva, Khim. Vys. Énerg., 49, No. 6, 463–468 (2015) [N. A. Davidenko, I. I. Davidenko, S. L. Studzinsky, L. I. Kostenko, A. A. Ishchenko, E. V. Mokrinskaya, and L. S. Tonkopieva, High Energy Chem., 49, No. 6, 420–425 (2015)].

  11. 11.

    N. A. Davidenko, Yu. P. Getmanchuk, E. V. Mokrinskaya, L. R. Kunitskaya, I. I. Davidenko, V. A. Pavlov, S. L. Studzinsky, and N. G. Chuprina, Appl. Opt., 53, No. 10, B242–B247 (2014).

  12. 12.

    N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Kravchenko, N. N. Kuranda, E. V. Mokrinskaya, and S. L. Studzinsly, Appl. Opt., 57, No. 8, 1832–1837 (2018).

  13. 13.

    N. A. Davidenko and A. A. Ishchenko, Theor. Exper. Chem., 38, No. 2, 88–108 (2002).

  14. 14.

    R. V. Shemegen, T. E. Keda, D. S. Milokhov, O. V. Khilya, Yu. M. Volovenko, E. V. Mokrinskaya, L. S. Tonkopieva, N. G. Chuprina, I. I. Davidenko, and N. A. Davidenko, Zh. Prikl. Spektrosk., 85, No. 3, 392–397 (2018) [R. V. Shemegen, T. E. Keda, D. S. Milokhov, O. V. Khilya, Yu. M. Volovenko, E. V. Mokrinskaya, L. S. Tonkopieva, N. G. Chuprina, I. I. Davidenko, and N. A. Davidenko, J. Appl. Spectrosc., 85, 401–406 (2018)].

  15. 15.

    K. Schwetlick, Organicum, Wiley-VCH Verlag GmbH, Weinheim (2001).

  16. 16.

    N. A. Davidenko, A. A. Ishchenko, and V. A. Pavlov, Zh. Nauch. Prikl. Fotografi i, 44, No. 2, 52–56 (1999) [N. A. Davidenko, A. A. Ishchenko, and V. A. Pavlov, Sci. Appl. Photo., 41, No. 2, 169–174 (1999)].

  17. 17.

    N. A. Davidenko and A. A. Ishchenko, Phys. Solid State, 42, No. 8, 1403–1409 (2000).

  18. 18.

    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, 2921–2923 (1991).

  19. 19.

    M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford (1982).

  20. 20.

    G. V. Bulavko, N. A. Davidenko, A. A. Ishchenko, S. L. Studzinskii, and A. G. Shkavro, Pis’ma ZhTF, 41, No. 4, 77–85 (2015) [G. V. Bulavko, N. A. Davidenko, A. A. Ishchenko, S. L. Studzinskii, and A. G. Shkavro, Techn. Phys. Lett., 41, No. 2, 191–194 (2015)].

Download references

Author information

Correspondence to N. A. Davidenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 5, pp. 767–772, September–October, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davidenko, N.A., Davidenko, I.I., Mokrinskaya, E.V. et al. Photophysical Properties of a Composite Based on Polyepoxypropylpyridobenzothiazole with the Squarylium Dye. J Appl Spectrosc 85, 870–874 (2018). https://doi.org/10.1007/s10812-018-0731-4

Download citation

Keywords

  • polymeric composite
  • photoconductivity
  • photogeneration
  • electronic transport
  • photovoltaics
  • pyridobenzothiazole
  • squarylium dye