Journal of Applied Spectroscopy

, Volume 85, Issue 2, pp 327–334 | Cite as

Quantitative Monitoring of Cefradine in Human Urine Using a Luminol/Sulfobutylether–β-Cyclodextrin Chemiluminescence System

  • M. X. ShenEmail author
  • X. J. Tan
  • Zh. H. Song

In this paper, a sensitive, rapid, and simple flow-injection chemiluminescence (FI-CL) technique is described for determining cefradine in human urine and capsule samples at the picogram level. The results show that cefradine within 0.1–100.0 nmol/L quantitatively quenches the CL intensity of the luminol/sulfo butylether–β-cyclodextrin (SBE–β-CD) system, with a relative correlation coefficient r of 0.9931. Subsequently, the possible mechanism for the quenching phenomenon is discussed in detail using the FI-CL and molecular docking methods. The proposed CL method, with a detection limit of 0.03 nmol/L (3σ) and relative standard deviations <3.0% (N = 7), is then implemented to monitor the excretion of cefradine in human urine. After orally administration, the cefradine reaches a maximum value of 1.37 ± 0.02 mg/mL at 2.0 h in urine, and the total excretion is 4.41 ± 0.03 mg/mL within 8.0 h. The absorption rate constant ka, the elimination rate constant ke, and the half-life t1/2 are 0.670 ± 0.008 h−1, 0.744 ± 0.005 h−1, and 0.93 ± 0.05 h, respectively.


cefradine sulfobutylether–β-cyclodextrin luminol chemiluminescence flow injection technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. El-Kosasy, S. M. Riad, L. E. Abd El-Fattah, and S. Abd El-Kader Ahmad, Water Res., 37, 1769–1775 (2003).CrossRefGoogle Scholar
  2. 2.
    U. K. Aman, I. Javeid, S. Khattak, and N. Saquib, Drug. Metab. Toxicol., 4, 1 (2013).Google Scholar
  3. 3.
    X. W. Hu, Y. L. Wang, C. Xie, G. Wang, and H. X. Hao, J. Chem. Eng. Data, 58, No. 7, 2028–2034 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Fakhri, S. Rashidi, M. Asif, I. Tyagi, S. Agarwal, and V. K. Gupta, J. Mol. Liq., 215, 269–275 (2016).CrossRefGoogle Scholar
  5. 5.
    M. A. Omar, O. H. Abdelmageed, and T. Z. Attia, Int. J. Anal. Chem., 1 (2009).Google Scholar
  6. 6.
    H. Zhang, L. L. Wu, Q. M. Li, and X. Z. Du, Chin. Chem. Lett., 19, 1470–1474 (2008).CrossRefGoogle Scholar
  7. 7.
    S. J. Choi, J. H. Ryu, H. W. Lee, M. J. Lee, J. H. Seo, and S. K. K.T. Tak, J. Chromatogr. B, 877, No. 31, 4059–4064 (2009).CrossRefGoogle Scholar
  8. 8.
    W. Q. Li, H. Y. Shen, Y.H. Hong, Y. Zhang, F. Yuan, and F. Zhang, J. Chromatogr. B, 1022, 298–307 (2016).CrossRefGoogle Scholar
  9. 9.
    V. M. Johnson, J. P. Allanson, and R. C. Causon, J. Chromatogr. B, 740, 71–80 (2000).CrossRefGoogle Scholar
  10. 10.
    A. R. Solangi, S. Q. Memon, M. Y. Khuhawar, and M. I. Bhanger, Acta Chromatogr., 19, 81–96 (2007).Google Scholar
  11. 11.
    M. A. Omar, O. H. Abdelmageed, and T. Z. Attia, Talanta, 77, 1394–1404 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Lu, N. Zhang, J. G. Li, and Q. Q. Li, Talanta, 81, Nos. 1–2, 698–702 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Khataee, R. Lotfi , A. Hasanzadeh, M. Iranifam, and S. W. Joo, Spectrochim. Acta A, 157, No. 15, 88–95 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. Khataee, R. Lotfi , A. Hasanzadeh, M. Iranifam, M. Zarei, and S. W. Joo, Spectrochim. Acta A, 153, No. 15, 273–280 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    Z. F. Fu, G. K. Li, and Y. F. Hu, Chin. J. Anal. Chem., 43, No. 9, 1322–1328 (2015).CrossRefGoogle Scholar
  16. 16.
    J. T. Cao, H. Wang, and Y. M. Liu, Spectrochim. Acta A, 140, No. 5, 162–165 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    J. X. Du and H. Li, Appl. Spectrosc., 64, 1154–1159 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    W. Liu, Z. J. Zhang, and Z. Q. Liu, Anal. Chim. Acta, 592, 187–192 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Zhong, Z. G. Shen, Y. Yang, and J. F. Chen, Int. J. Pharm., 301, 286–293 (2005).CrossRefGoogle Scholar
  20. 20.
    X. H. Zhang, L. Q. Su, and Y. H. Wang, Chem. Eng., 10, 60 (2006).Google Scholar
  21. 21.
    V. Zia, R. A. Rajewski, and V. J. Stella, Pharm. Res., 18, 667–673 (2001).CrossRefGoogle Scholar
  22. 22.
    A. A. Mahmoud, G. S. El-Feky, R. Kamel, and G. E. A. Awad, Int. J. Pharm., 413, 229–236 (2011).CrossRefGoogle Scholar
  23. 23.
    X. Y. Xiong, X. F. Zhao, and Z. H. Song, Anal. Biochem., 460, No. 1, 54–60 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Stojanov, H. M. Nielsen, and K. L. Larsen, Int. J. Pharm., 422, Nos. 1–2, 349–355 (2012).CrossRefGoogle Scholar
  25. 25.
    L. L. Chen, L. C. Chen, and Y. J. W. I. Shu, J. Pharm. Sci., 101, 2883 (2012).CrossRefGoogle Scholar
  26. 26.
    C. J. Zhou, L. F. Li, Y. Liu, S. P. Wen, Y. E. Guo, and X. G. Niu, Adv. Mater. Res., 455–456, 1177 (2012).CrossRefGoogle Scholar
  27. 27.
    C. Aramă, C. Nicolescu, A. Nedelcu, and C. M. Monciu, J. Incl. Phenom. Macrocycl. Chem., 70, Nos. 3–4, 421–428 (2011).CrossRefGoogle Scholar
  28. 28.
    M. X. Shen, H. R. Lv, and Z. H. Song, B. Kor. Chem. Soc., 34, No. 11, 3199–3205 (2013).CrossRefGoogle Scholar
  29. 29.
    M. X. Shen, M. Wu, X. J. Tan, and Z. H. Song, Instrum. Sci. Technol., 42, No. 1, 46–58 (2014).CrossRefGoogle Scholar
  30. 30.
    M. Wu, D. H. Chen, and Z. H. Song, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 96, 1 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Springer, New York (1999).CrossRefGoogle Scholar
  32. 32.
    P. D. Ross and S. Subramanian, Biochemistry, 20, No. 11, 3096–3102 (1981).CrossRefGoogle Scholar
  33. 33.
    M. Wu, Z. H. Song, and J. J. Zhang, Drug. Metab. Lett., 5, No. 4, 259–266 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.College of Earth Sciences and Land ResourcesXi’anChina
  3. 3.College of Chemistry and Materials ScienceNorthwest UniversityXi’anChina

Personalised recommendations