Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improved Diffraction Efficiency of Polarization-Sensitive Azobenzene-Containing Copolymers in an Electric Field

  • 23 Accesses

Recording media for polarization holography based on new azobenzene-containing monomers with octylmethacrylate are created. Their electrophysical and information properties are investigated. Improvement of the diffraction efficiency of holograms in these media in an external electric field formed by charging the free surface of the polymer film in a corona discharge is demonstrated. The diffraction efficiency is improved more in the copolymer, in which the azobenzene fragments possess larger dipole moments.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. I. Davidenko, N. A. Davidenko, I. A. Savchenko, and V. G. Syromyatnikov, Zh. Prikl. Spektrosk., 72, No. 4, 499–503 (2005) [I. I. Davidenko, N. A. Davidenko, I. A. Savchenko, and V. G. Syromyatnikov, J. Appl. Spectrosc., 72, No. 4, 541–546 (2005)].

  2. 2.

    N. A. Davidenko, I. I. Davidenko, I. A. Savchenko, A. N. Popenaka, and A. A. Yandyuk, Opt. Spektrosk., 101, No. 6, 966–973 (2006).

  3. 3.

    N. A. Davidenko, I. A. Savchenko, I. I. Davidenko, A. N. Popenaka, A. N. Shumelyuk, and V. A. Bedarev, Zh. Tekh. Fiz., 77, No. 4, 60–64 (2007).

  4. 4.

    Sh. D. Kakichashvili, Polarization Holography [in Russian], Nauka, Leningrad (1989).

  5. 5.

    L. Nikolova and P. S. Ramanujam, Polarization Holography, Cambridge Univ. Press, Cambridge (2009).

  6. 6.

    A. Priimagi and A. Shevchenko, J. Polym. Sci., Part B: Polym. Phys., 52, No. 3, 163–182 (2014).

  7. 7.

    A. N. Simonov, D. V. Uraev, S. G. Kostromin, V. P. Shibaev, and A. I. Stakhanov, Laser Phys., 12, 1294–1299 (2002).

  8. 8.

    C. Cojocariu and P. Rochon, Macromolecules, 38, 9526–9532 (2005).

  9. 9.

    N. Davidenko, I. Davidenko, A. Ishchenko, A. Kulinich, V. Pavlov, S. Studzinsky, and N. Chuprina, Appl. Opt., 51, C48–C54 (2012).

  10. 10.

    N. A. Davidenko, Yu. P. Getmanchuk, E. V. Mokrinskaya, L. R. Kunitskaya, I. I. Davidenko, V. A. Pavlov, S. L. Studzinsky, and N. G. Chuprina, Appl. Opt., 53, No. 10, B242–B247 (2014).

  11. 11.

    N. A. Davidenko, I. I. Davidenko, S. L. Studzinsky, V. A. Pavlov, E. V. Mokrinskaya, N. G. Chuprina, and V. V. Kravchenko, Appl. Opt., 55, No. 12, B31–B35 (2016).

  12. 12.

    K. Schwetlick, Organicum, Wiley-VCH Verlag GmbH, Weinheim (2001).

  13. 13.

    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, 2921–2923 (1991).

  14. 14.

    R. J. Collier, C. B. Burckhart, and L. H. Lin, Optical Holography, Academic Press, New York, London (1973).

  15. 15.

    A. M. Nastas, Opt. Spectrosc., 95, No. 6, 952–955 (2003).

Download references

Author information

Correspondence to N. A. Davidenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 1, pp. 154–160, January–February, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davidenko, N.A., Davidenko, I.I., Mokrinskaya, E.V. et al. Improved Diffraction Efficiency of Polarization-Sensitive Azobenzene-Containing Copolymers in an Electric Field. J Appl Spectrosc 85, 143–148 (2018). https://doi.org/10.1007/s10812-018-0624-6

Download citation

Keywords

  • azopolymers
  • polarization holography
  • improving diffraction efficiency
  • dipole relaxation
  • corona discharge
  • surface relief