Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 73–78 | Cite as

Control of Charge Transfer in C60–ZnO Composite Under the Influence of UV Laser Radiation by the Methods of Raman Spectroscopy and Photoluminescence

  • E. A. Zakhidov
  • M. A. Zakhidova
  • A. M. Kokhkharov
  • S. Q. Nematov
  • R. A. Nusretov
  • V. O. Kuvondikov
Article
  • 7 Downloads

Raman and photoluminescence spectra of nanostructured ZnO films with adsorbed C60 molecules were studied. The possibility of intensive C60–ZnO electronic coupling forming in this composite was investigated. It is shown that such an electron coupling can be significantly enhanced by irradiating the composite with high intensity UV laser radiation (λ = 325 nm).

Keywords

fullerene C60 nanostructured ZnO film electron transfer Raman scattering photoluminescence electronic coupling laser irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Hau, H. L. Yip, H. Ma, and A. K. Jen, Appl. Phys. Lett., 93, 233304-1–233304-4 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    S. Fukuzumi, K. Ohkubo, and T. Suenobu, Acc. Chem. Res., 47, 1455–1464 (2014).CrossRefGoogle Scholar
  3. 3.
    H. Fu, T. Xu, S. Zhu, and Y. Zhu, Environ. Sci. Technol., 42, 8064–8069 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    P. A. Troshin and N. S. Sariciftci, in: P. A. Gale and J. W. Steed (Eds.), Supramolecular Chemistry for Organic Photovoltaics. Supramolecular Chemistry: From Molecules to Nanomaterials, John Wiley & Sons, US (2012), pp. 2725–2788.Google Scholar
  5. 5.
    A. S. Huss, A. Bierbaum, R. Chitta, D. J. Ceckanowicz, K. R. Mann, W. L. Gladfelter, and D. A. Blank, J. Am. Chem. Soc., 132, 13963–13965 (2010).CrossRefGoogle Scholar
  6. 6.
    H. M. Cheng, K. F. Lin, H. C. Hsu, and W. F. Hsieh, Appl. Phys. Lett., 88, 261909-1–4 (2006).ADSGoogle Scholar
  7. 7.
    H. Imahori, Org. Biomol. Chem., 2, 1425–1433 (2004).CrossRefGoogle Scholar
  8. 8.
    D. Gust, Faraday Discussions, 185, 9–35 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Zakhidov, M. A. Zakhidova, A. M. Kokhkharov, A. E. Yarbekov, V. O. Kuvondikov, S. Q. Nematov, E. P. Normatov, and A. A. Saparbaev, Turkish J. Biol., 39, No. 2, 276–283 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Janotti and C. G. Van de Walle, Prog. Phys., 72, 126501 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. Kolodziejczak-Radzimska and T. Jesionowski, Rev. Mater., 7, 2833–2881 (2014).Google Scholar
  12. 12.
    L. Zhao, J. Lian, Y. Liu, and Q. Jiang, Appl. Surface Sci., 252, 8451–8455 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    P. V. Kamat, J. Am. Chem. Soc., 113, 9705–9707 (1991).CrossRefGoogle Scholar
  14. 14.
    P. Schulz, L. L. Kelly, P. Winget, H. Li, H. Kim, P. F. Ndione, A. K. Sigdel, J. J. Berry, S. Graham, J. L. Bredas, A. Kahn, and O. L. A. Monti, Adv. Funct. Mater., 24, 7381–7389 (2014).CrossRefGoogle Scholar
  15. 15.
    S. M. Shah, A. Kira, H. Imahori, D. Ferry, H. Brisset, F. Fages, and J. Ackermann, J. Colloid Interface Sci., 386, 268–276 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    K. Yao, L. Chen, Y. Chen, F. Li, and P. Wang, J. Phys. Chem. C, 116, 3486–3491 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Hayashi, A. Kira, T. Umeyama, Y. Matano, P. Charoensirithavorn, T. Sagawa, S. Yoshikawa, N. V. Tkachenko, H. Lemmetyinen, and H. Imahori, J. Phys. Chem. C, 113, 10819–10828 (2009).CrossRefGoogle Scholar
  18. 18.
    S. K. Hong, G. Y. Yu, C. S. Lim, and W. B. Ko, Elastomers and Composites, 45, 206–211 (2010).Google Scholar
  19. 19.
    O. Ostroverkhova, Chem. Rev., 116, 13279–13412 (2016).CrossRefGoogle Scholar
  20. 20.
    D. Bonifazi, O. Enger, and F. Diederich, Chem. Soc. Rev., 36, 390–414 (2007).CrossRefGoogle Scholar
  21. 21.
    M. Voigt, M. Klaumunzer, A. Ebel, F. Werner, G. Yang, R. Marczak, E. Spiecker, D. M. Guldi, A. Hirsch, and W. Peukert, J. Phys. Chem. C, 115, 5561–5565 (2011).Google Scholar
  22. 22.
    P. Zhong, W. Que, Y. N. Liang, X. Yin, Y. Liao, L. B. Kong, and X. Hu, Royal Soc. Chem. Adv., 3, 17904–17913 (2013).Google Scholar
  23. 23.
    C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, and C. S. Hsu, J. Am. Chem. Soc., 132, 4887–4893 (2010).CrossRefGoogle Scholar
  24. 24.
    D. I. Son, B. W. Kwon, J. D. Yang, D. H. Park, B. Angadib, and W. K. Choi, J. Mater. Chem., 22, 816–819 (2012).CrossRefGoogle Scholar
  25. 25.
    P. V. Kamat, V. Gevaert, and K. Vinodgopal, J. Phys. Chem. B, 101, 4422–4427 (1997).CrossRefGoogle Scholar
  26. 26.
    E. A. Zakhidov, M. A. Zakhidova, A. M. Kokhkharov, Sh. K. Nematov, R. A. Nusretov, V. O. Kuvondikov, A. A. Saparbaev, Opt. Spektrosk., 122, 627–634 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    S. A. Studenikin, N. Golego, and V. Cocivera, J. Appl. Phys., 83, 2104–2111 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    E. Zakhidov, A. Kokhkharov, V. Kuvondikov, S. Nematov, and R. Nusretov, J. Korean Phys. Soc., 67, 1262–1267 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    С. T. Chen, F. C. Hsu, S. W. Kuan, and Y. F. Chen, Solar Energy Mater. Solar Cells, 95, 740–744 (2011).CrossRefGoogle Scholar
  30. 30.
    J. K. Kim, S. Bae, W. Kim, M. J. Jeong, S. H. Lee, C. L. Lee, W. K. Choi, J. Y. Hwang, J. H. Park, and D. I. Son, Nano Energy, 13, 258–266 (2015).CrossRefGoogle Scholar
  31. 31.
    S. U. Yuldashev, G. N. Panin, T. W. Kang, R. A. Nusretov, and I. V. Khvan, J. Appl. Phys., 100, 013704-1–013704-4 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    G. Gumus, O. M. Ozkendir, H. Kavak, and Y. Ufuktepe, J. Optoelectron. Adv. Mater., 8, 299–303 (2006).Google Scholar
  33. 33.
    A. M. Kokhkharov, S. A. Bakhramov, U. K. Makhmanov, R. A. Nusretov, and E. A. Zakhidov, Opt. Commun., 285, 2947–2951 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    U. Makhmanov, O. Ismailova, A. Kokhkharov, E. Zakhidov, and S. Bakhramov, Phys. Lett. A, 380, 2081–2084 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    Kh. A. Alim, V. A. Fonoberov, and A. A. Balandin, Appl. Phys. Lett., 86, 053103-1–3 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    K. Park, J. S. Lee, M. Y. Sung, and S. Kim, Jpn. J. Appl. Phys., 41, 7317–7321 (2002).ADSCrossRefGoogle Scholar
  37. 37.
    D. S. Bethune, G. Meijer, W. C. Tang, and H. J. Rosen, Chem. Phys. Lett., 174, 219–222 (1990).ADSCrossRefGoogle Scholar
  38. 38.
    Handbook of Raman Spectra. Free Database (2000–2017), Laboratoire de géologie de Lyon ENS de Lyon France; www.ens-lyon.fr/LST/Raman.
  39. 39.
    E. P. Zaretskaya, V. F. Gremenok, A. V. Semchenko, V. V. Sidskij, and R. L. Yushkanes, Fiz. Tekh. Poluprovodn., 49, 1297–1303 (2015).Google Scholar
  40. 40.
    V. A. Zubov, M. M. Suchshinskii, and I. K. Shuvalov, Usp. Fiz. Nauk, 89, 49–88 (1966).CrossRefGoogle Scholar
  41. 41.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J. Raman Spectrosc., 27, 351–371 (1996).ADSCrossRefGoogle Scholar
  42. 42.
    D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, and M. S. Вevries, Chem. Phys. Lett., 179, 181–186 (1991).ADSCrossRefGoogle Scholar
  43. 43.
    C. Taliani, G. Ruani, R. Zamboni, R. Danieli, S. Rossini, V. N. Denisov, V. M. Burlakov, F. Negri, G. Orlandi, and F. Zerbetto, J. Chem. Soc. Chem. Commun., Issue 3, 220–222 (1993).Google Scholar
  44. 44.
    K. Nakamoto, in: Handbook of Vibrational Spectroscopy, John Wiley & Sons, US (2006), pp. 1872–1892.Google Scholar
  45. 45.
    A. Bedia, F. Z. Bedia, M. Aillerieb, N. Maloufi d, and B. Benyouce, Energy Proc., 74, 529–538 (2015).CrossRefGoogle Scholar
  46. 46.
    J. M. Hvam, Phys. State Sol., 63, 511–517 (1974).ADSCrossRefGoogle Scholar
  47. 47.
    A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin., 90, 123–128 (2000).CrossRefGoogle Scholar
  48. 48.
    P. Dallas, G. Rogers, B. Reid, R. A. Taylor, H. Shinohara, G. A. D. Briggs, and K. Porfyrakis, Chem. Phys., 465, 28–39 (2016).ADSCrossRefGoogle Scholar
  49. 49.
    E. A. Zakhidov, M. A. Zakhidov, A. M. Kokhkharov, Sh. K. Nematov, R. A. Nusretov, and V. P. Kuvondikov, Geliotekhnika, No. 1, 14–20 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. Zakhidov
    • 1
  • M. A. Zakhidova
    • 1
  • A. M. Kokhkharov
    • 1
  • S. Q. Nematov
    • 1
  • R. A. Nusretov
    • 1
  • V. O. Kuvondikov
    • 1
  1. 1.Institute of Ion-Plasma and Laser TechnologiesAcademy of Sciences of UzbekistanTashkentUzbekistan

Personalised recommendations