Journal of Applied Spectroscopy

, Volume 84, Issue 5, pp 888–899 | Cite as

Synthesis, Vibrational Spectra, and DFT Simulations of 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene

Article
  • 15 Downloads

A new thiophene derivative, 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene (2), was synthesized through the Suzuki coupling reaction of 4-bromo-5-methylthiophen-2-ylboronic acid (1) and 4-iodonitrobenzene, and its structure was confirmed by nuclear magnetic resonance (NMR), low and high resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and X-ray investigations of the crystal structure. The FT-IR spectra (4000–400 cm–1), Raman spectra (4000–100 cm–1), and theoretical vibrational frequencies of this new substance were investigated. Its theoretically established geometric parameters and calculated vibrational frequencies are in good agreement with the reported experimental data. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and other related parameters of the compound were calculated. The ionization potentials given by the B3LYP and HF (Hartree–Fock) methods for this new compound are –0.30456 and –0.30501 eV, respectively.

Keywords

FT-IR spectra Raman spectra 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene vibrational frequencies frontier molecular orbital 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Irie, Chem. Rev., 100, 1685−1716 (2000).CrossRefGoogle Scholar
  2. 2.
    M. Balter, S. Li, J. R. Nilsson, J. Andreasson, and U. Pischel, J. Am. Chem. Soc., 135, 10230−10233 (2013).CrossRefGoogle Scholar
  3. 3.
    J.-C. Boyer, C-J. Carling, B. D. Gates, and N. R. Branda, J. Am. Chem. Soc., 132, 15766–15772 (2010).CrossRefGoogle Scholar
  4. 4.
    T. C. Pijper, T. Kudernac, W. R. Browne, and B. L. Feringa, J. Phys. Chem. C, 117, 17623–17632 (2013).CrossRefGoogle Scholar
  5. 5.
    N. Soh, K. Yoshida, H. Nakajima, K. Nakano, T. Imato, T. Fukaminatob, and M. Irie, M. Chem. Commun., 5206–5208 (2007).Google Scholar
  6. 6.
    E. Negishi (Ed.), Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, Part III (2002), 213 p.Google Scholar
  7. 7.
    J. J. Li and G. W. Gribble, Palladium in Heterocyclic Chemistry; Pergamon, Amsterdam (2000).Google Scholar
  8. 8.
    J. J. Dong, D. Roy, J. R. Roy, M. Ionita, and H. Doucet, Synthesis, 3530–3546 (2011).Google Scholar
  9. 9.
    G. Vamvounis and D. Gendron, Tetrahedron Lett., 54, 3785–3787 (2013).CrossRefGoogle Scholar
  10. 10.
    W. Renjie, P. Shouzhi, L. Gang, and C. Bing, Tetrahedron, 69, 5537–5544 (2013).CrossRefGoogle Scholar
  11. 11.
    K. A. Browne, D. D. Deheyn, G. A. El-Hiti, K. Smith, and I. Weeks, J. Am. Chem. Soc., 133, 14637–14648 (2011).CrossRefGoogle Scholar
  12. 12.
    K. Smith, G. A. El-Hiti, and A. S. Hegazy, Chem. Commun., 46, 2790−2792 (2010).CrossRefGoogle Scholar
  13. 13.
    K. Smith, G. A. El-Hiti, and A. C. Hawes, Synthesis, 2047−2052 (2003).Google Scholar
  14. 14.
    K. Smith, G. A. El-Hiti, G. Pritchard, and A. Hamilton, J. Chem. Soc., Perkin Trans. I, 2299−2304 (1999).Google Scholar
  15. 15.
    Y. Sert, A. A. Balakit, N. Öztürk, F. Ucun, and G. A. El-Hiti, Spectrochim. Acta A, 131, 502−511 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Sert, F. Ucun, G. A. El-Hiti, K. Smith, and A. S. Hegazy, J. Spectrosc. (2016); https://doi.org/10.1155/2016/5396439.
  17. 17.
    G. M. Sheldrick, Acta Crystallogr., A64, 112–122 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA (2001).Google Scholar
  19. 19.
    D. C. Young, Computational Chemistry A Practical Guide for Applying Techniques to Real-World Problems (Electronics), John Wiley and Sons, New York (2001).Google Scholar
  20. 20.
    Gaussian 09, Revision A.1, Gaussian, Wallingford CT (2009).Google Scholar
  21. 21.
    M. H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).Google Scholar
  22. 22.
    M. H. Jamróz, Spectrochim. Acta A, 114, 220−230 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    G. A. El-Hiti, K. Smith, A. A. Balakit, A. Masmali, and B. M. Kariuki, Acta Crystallogr., E69, o1385 (2013).Google Scholar
  24. 24.
    A. Ünal and B. Eren, Spectrochim. Acta A, 114, 129–136 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    M. Karabacak, S. Bilgili, T. Mavis, M. Eskici, and A. Atac, Spectrochim. Acta A, 115, 709–718 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    W. T. Harrison, C. S. C. Kumar, H. S. Yathirajan, B. V. Ashalatha, and B. Narayana, Acta Crystallogr., E66, o2477 (2010).Google Scholar
  27. 27.
    X. Li, X. Jia, and J. Li, Acta Crystallogr., E69, o848 (2013).Google Scholar
  28. 28.
    M. M. Bader, Acta Crystallogr., E65, o2119 (2009).Google Scholar
  29. 29.
    M. Akkurt, Ş. P. Yalçın, A. M. Asiri, and O. Büyükgüngör, Acta Crystallogr., E64, o923 (2008).Google Scholar
  30. 30.
    Z. H. Choban, M. Hanif, and M. N. Tahir, Acta Crystallogr., E65, o117 (2009).Google Scholar
  31. 31.
    G. Varsayani, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. 1 and 2, Academic Kiado, Budapest (1973).Google Scholar
  32. 32.
    M. Jag, Organic Spectroscopy-Principles and Applications, 2nd ed., Narosa Publishing House, New Delhi (2001).Google Scholar
  33. 33.
    V. Balachandran, A. Janaki, and A. Nataraj, Spectrochim. Acta A, 118, 321–330 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    J. Svoboda, J. Sedlacek, J. Zednik, G. Dvorakova, O. Trhlikova, D. Redrova, H. Balcar, and J. Vohlidal, J. Pol. Sci., 46, 2776–2787 (2008).CrossRefGoogle Scholar
  35. 35.
    C. I. Sainz-Diaz, M. Francisco-Marquez, and A. Vivier-Bunge, Theor. Chem. Acc., 125, 83–95 (2010).CrossRefGoogle Scholar
  36. 36.
    T. D. Klots, R. D. Chirico, and W. V. Steele, Spectrochim. Acta A, 5, 765–795 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    M. Karabacak, C. Karaca, A. Atac, M. Eskici, A. Karanfil, and E. Köse, Spectrochim. Acta A, 97, 556–567 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).Google Scholar
  39. 39.
    N. B. Colthup, L. H. Daly, and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston (1990).Google Scholar
  40. 40.
    B. Smith, Infrared Spectral Interpretation. A Systematic Approach, CRP Press, Washington, DC (1999).Google Scholar
  41. 41.
    A. Kumar, V. Deval, P. Tandom, A. Gupta, and E. D. D'silva, Spectrochim. Acta A, 130, 41–53 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    S. Periandy and S. Mohan, Proc. Natl. Acad. Sci. India, 68(A), III (1998).Google Scholar
  43. 43.
    V. R. Dani, Organic Spectroscopy, Tata-McGraw Hill Publishing Company, New Delhi, p. 139 (1995).Google Scholar
  44. 44.
    E. Fereyduni, M. K. Rofouei, M. Kamae, S. Ramalingam, and S. M. Sharifkhani, Spectrochim. Acta A, 90, 193–201 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    H. Abdel-Shafy, H. Perlmutter, and H. Kimmel, J. Mol. Struct., 42, 37–49 (1977).ADSCrossRefGoogle Scholar
  46. 46.
    V. K. Kumar and V. Balachandran, Spectrochim. Acta A, 61, 1811–1819 (2005).ADSCrossRefGoogle Scholar
  47. 47.
    A. Kovacs, G. Keresztury, and V. Izvekov, Chem. Phys., 253, 193–204 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    K. Sarojini, H. Krishnan, C. C. Kanakam, and S. Muthu, Spectrochim. Acta A, 108, 159–170 (2013).ADSCrossRefGoogle Scholar
  49. 49.
    N. Sundaraganesan, S. Ilakiamani, H. Saleem, and S. Mohan, Indian J. Pure Appl. Phys., 42, 585–590 (2004).Google Scholar
  50. 50.
    S. Ayyapan, N. Sundaraganesan, M. Kurt, T. R. Sertbakan, and M. Ozduran, J. Raman Spectrosc., 41, 1379–1387 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    K. Chaitanya, Spectrochim. Acta A, 86, 159–173 (2012).ADSCrossRefGoogle Scholar
  52. 52.
    E. Kavitha, N. Sundaraganesan, and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20–30 (2010).Google Scholar
  53. 53.
    A. Jayaprakash, V. Arjunan, and S. Mohan, Spectrochim. Acta A, 81, 620–630 (2011).ADSCrossRefGoogle Scholar
  54. 54.
    S. Subashchandrabose, H. Saleem, Y. Erdogdu, G. Rajarajan, and V. Thanikachalam, Spectrochim. Acta A, 82, 260–269 (2011).ADSCrossRefGoogle Scholar
  55. 55.
    T. Vijayakumar, I. Hubert Joe, C. P. R. Nair, and V. S. Jayakumar, Chem. Phys., 343, 83–99 (2008).ADSCrossRefGoogle Scholar
  56. 56.
    M. Govindarajan, M. Karabacak, A. Suvitha, and S. Periandy, Spectrochim. Acta A, 89,137–148 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of PharmacyUniversity of BabylonBabylonIraq
  2. 2.Bozok University, Department of Physics, Faculty of Art & SciencesYozgatTurkey
  3. 3.Sorgun Vocational SchoolBozok UniversityYozgatTurkey
  4. 4.Erzincan University, Department of Physics, Faculty of Art & SciencesErzincanTurkey
  5. 5.School of ChemistryCardiff UniversityCardiffUK
  6. 6.Cornea Research Chair, Department of Optometry, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations