Synthesis, Vibrational Spectra, and DFT Simulations of 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene
- 15 Downloads
A new thiophene derivative, 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene (2), was synthesized through the Suzuki coupling reaction of 4-bromo-5-methylthiophen-2-ylboronic acid (1) and 4-iodonitrobenzene, and its structure was confirmed by nuclear magnetic resonance (NMR), low and high resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and X-ray investigations of the crystal structure. The FT-IR spectra (4000–400 cm–1), Raman spectra (4000–100 cm–1), and theoretical vibrational frequencies of this new substance were investigated. Its theoretically established geometric parameters and calculated vibrational frequencies are in good agreement with the reported experimental data. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and other related parameters of the compound were calculated. The ionization potentials given by the B3LYP and HF (Hartree–Fock) methods for this new compound are –0.30456 and –0.30501 eV, respectively.
Keywords
FT-IR spectra Raman spectra 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene vibrational frequencies frontier molecular orbitalPreview
Unable to display preview. Download preview PDF.
References
- 1.M. Irie, Chem. Rev., 100, 1685−1716 (2000).CrossRefGoogle Scholar
- 2.M. Balter, S. Li, J. R. Nilsson, J. Andreasson, and U. Pischel, J. Am. Chem. Soc., 135, 10230−10233 (2013).CrossRefGoogle Scholar
- 3.J.-C. Boyer, C-J. Carling, B. D. Gates, and N. R. Branda, J. Am. Chem. Soc., 132, 15766–15772 (2010).CrossRefGoogle Scholar
- 4.T. C. Pijper, T. Kudernac, W. R. Browne, and B. L. Feringa, J. Phys. Chem. C, 117, 17623–17632 (2013).CrossRefGoogle Scholar
- 5.N. Soh, K. Yoshida, H. Nakajima, K. Nakano, T. Imato, T. Fukaminatob, and M. Irie, M. Chem. Commun., 5206–5208 (2007).Google Scholar
- 6.E. Negishi (Ed.), Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, Part III (2002), 213 p.Google Scholar
- 7.J. J. Li and G. W. Gribble, Palladium in Heterocyclic Chemistry; Pergamon, Amsterdam (2000).Google Scholar
- 8.J. J. Dong, D. Roy, J. R. Roy, M. Ionita, and H. Doucet, Synthesis, 3530–3546 (2011).Google Scholar
- 9.G. Vamvounis and D. Gendron, Tetrahedron Lett., 54, 3785–3787 (2013).CrossRefGoogle Scholar
- 10.W. Renjie, P. Shouzhi, L. Gang, and C. Bing, Tetrahedron, 69, 5537–5544 (2013).CrossRefGoogle Scholar
- 11.K. A. Browne, D. D. Deheyn, G. A. El-Hiti, K. Smith, and I. Weeks, J. Am. Chem. Soc., 133, 14637–14648 (2011).CrossRefGoogle Scholar
- 12.K. Smith, G. A. El-Hiti, and A. S. Hegazy, Chem. Commun., 46, 2790−2792 (2010).CrossRefGoogle Scholar
- 13.K. Smith, G. A. El-Hiti, and A. C. Hawes, Synthesis, 2047−2052 (2003).Google Scholar
- 14.K. Smith, G. A. El-Hiti, G. Pritchard, and A. Hamilton, J. Chem. Soc., Perkin Trans. I, 2299−2304 (1999).Google Scholar
- 15.Y. Sert, A. A. Balakit, N. Öztürk, F. Ucun, and G. A. El-Hiti, Spectrochim. Acta A, 131, 502−511 (2014).ADSCrossRefGoogle Scholar
- 16.Y. Sert, F. Ucun, G. A. El-Hiti, K. Smith, and A. S. Hegazy, J. Spectrosc. (2016); https://doi.org/10.1155/2016/5396439.
- 17.G. M. Sheldrick, Acta Crystallogr., A64, 112–122 (2008).ADSCrossRefGoogle Scholar
- 18.A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA (2001).Google Scholar
- 19.D. C. Young, Computational Chemistry A Practical Guide for Applying Techniques to Real-World Problems (Electronics), John Wiley and Sons, New York (2001).Google Scholar
- 20.Gaussian 09, Revision A.1, Gaussian, Wallingford CT (2009).Google Scholar
- 21.M. H. Jamróz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).Google Scholar
- 22.M. H. Jamróz, Spectrochim. Acta A, 114, 220−230 (2013).ADSCrossRefGoogle Scholar
- 23.G. A. El-Hiti, K. Smith, A. A. Balakit, A. Masmali, and B. M. Kariuki, Acta Crystallogr., E69, o1385 (2013).Google Scholar
- 24.A. Ünal and B. Eren, Spectrochim. Acta A, 114, 129–136 (2013).ADSCrossRefGoogle Scholar
- 25.M. Karabacak, S. Bilgili, T. Mavis, M. Eskici, and A. Atac, Spectrochim. Acta A, 115, 709–718 (2013).ADSCrossRefGoogle Scholar
- 26.W. T. Harrison, C. S. C. Kumar, H. S. Yathirajan, B. V. Ashalatha, and B. Narayana, Acta Crystallogr., E66, o2477 (2010).Google Scholar
- 27.X. Li, X. Jia, and J. Li, Acta Crystallogr., E69, o848 (2013).Google Scholar
- 28.M. M. Bader, Acta Crystallogr., E65, o2119 (2009).Google Scholar
- 29.M. Akkurt, Ş. P. Yalçın, A. M. Asiri, and O. Büyükgüngör, Acta Crystallogr., E64, o923 (2008).Google Scholar
- 30.Z. H. Choban, M. Hanif, and M. N. Tahir, Acta Crystallogr., E65, o117 (2009).Google Scholar
- 31.G. Varsayani, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. 1 and 2, Academic Kiado, Budapest (1973).Google Scholar
- 32.M. Jag, Organic Spectroscopy-Principles and Applications, 2nd ed., Narosa Publishing House, New Delhi (2001).Google Scholar
- 33.V. Balachandran, A. Janaki, and A. Nataraj, Spectrochim. Acta A, 118, 321–330 (2014).ADSCrossRefGoogle Scholar
- 34.J. Svoboda, J. Sedlacek, J. Zednik, G. Dvorakova, O. Trhlikova, D. Redrova, H. Balcar, and J. Vohlidal, J. Pol. Sci., 46, 2776–2787 (2008).CrossRefGoogle Scholar
- 35.C. I. Sainz-Diaz, M. Francisco-Marquez, and A. Vivier-Bunge, Theor. Chem. Acc., 125, 83–95 (2010).CrossRefGoogle Scholar
- 36.T. D. Klots, R. D. Chirico, and W. V. Steele, Spectrochim. Acta A, 5, 765–795 (1994).ADSCrossRefGoogle Scholar
- 37.M. Karabacak, C. Karaca, A. Atac, M. Eskici, A. Karanfil, and E. Köse, Spectrochim. Acta A, 97, 556–567 (2012).ADSCrossRefGoogle Scholar
- 38.N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).Google Scholar
- 39.N. B. Colthup, L. H. Daly, and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, Boston (1990).Google Scholar
- 40.B. Smith, Infrared Spectral Interpretation. A Systematic Approach, CRP Press, Washington, DC (1999).Google Scholar
- 41.A. Kumar, V. Deval, P. Tandom, A. Gupta, and E. D. D'silva, Spectrochim. Acta A, 130, 41–53 (2014).ADSCrossRefGoogle Scholar
- 42.S. Periandy and S. Mohan, Proc. Natl. Acad. Sci. India, 68(A), III (1998).Google Scholar
- 43.V. R. Dani, Organic Spectroscopy, Tata-McGraw Hill Publishing Company, New Delhi, p. 139 (1995).Google Scholar
- 44.E. Fereyduni, M. K. Rofouei, M. Kamae, S. Ramalingam, and S. M. Sharifkhani, Spectrochim. Acta A, 90, 193–201 (2012).ADSCrossRefGoogle Scholar
- 45.H. Abdel-Shafy, H. Perlmutter, and H. Kimmel, J. Mol. Struct., 42, 37–49 (1977).ADSCrossRefGoogle Scholar
- 46.V. K. Kumar and V. Balachandran, Spectrochim. Acta A, 61, 1811–1819 (2005).ADSCrossRefGoogle Scholar
- 47.A. Kovacs, G. Keresztury, and V. Izvekov, Chem. Phys., 253, 193–204 (2000).ADSCrossRefGoogle Scholar
- 48.K. Sarojini, H. Krishnan, C. C. Kanakam, and S. Muthu, Spectrochim. Acta A, 108, 159–170 (2013).ADSCrossRefGoogle Scholar
- 49.N. Sundaraganesan, S. Ilakiamani, H. Saleem, and S. Mohan, Indian J. Pure Appl. Phys., 42, 585–590 (2004).Google Scholar
- 50.S. Ayyapan, N. Sundaraganesan, M. Kurt, T. R. Sertbakan, and M. Ozduran, J. Raman Spectrosc., 41, 1379–1387 (2010).ADSCrossRefGoogle Scholar
- 51.K. Chaitanya, Spectrochim. Acta A, 86, 159–173 (2012).ADSCrossRefGoogle Scholar
- 52.E. Kavitha, N. Sundaraganesan, and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20–30 (2010).Google Scholar
- 53.A. Jayaprakash, V. Arjunan, and S. Mohan, Spectrochim. Acta A, 81, 620–630 (2011).ADSCrossRefGoogle Scholar
- 54.S. Subashchandrabose, H. Saleem, Y. Erdogdu, G. Rajarajan, and V. Thanikachalam, Spectrochim. Acta A, 82, 260–269 (2011).ADSCrossRefGoogle Scholar
- 55.T. Vijayakumar, I. Hubert Joe, C. P. R. Nair, and V. S. Jayakumar, Chem. Phys., 343, 83–99 (2008).ADSCrossRefGoogle Scholar
- 56.M. Govindarajan, M. Karabacak, A. Suvitha, and S. Periandy, Spectrochim. Acta A, 89,137–148 (2012).ADSCrossRefGoogle Scholar