Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 4, pp 731–737 | Cite as

Quantitative Analysis of Magnesium in Soil by Laser-Induced Breakdown Spectroscopy Coupled with Nonlinear Multivariate Calibration

  • J. YongchengEmail author
  • S. Wen
  • Z. Baohua
  • L. Dong
Article

Laser-induced breakdown spectroscopy (LIBS) coupled with the nonlinear multivariate regression method was applied to analyze magnesium (Mg) contents in soil. The plasma was generated using a 100 mJ Nd:YAG pulsed laser, and the spectra were acquired using a multi-channel spectrometer integrated with a CCD detector. The line at 383.8 nm was selected as the analysis line for Mg. The calibration model between the intensity of characteristic line and the concentration of Mg was constructed. The traditional calibration curve showed that the concentration of Mg was not only related to the line intensity of itself, but also to other elements in soil. The intensity of characteristic lines for Mg (Mg I 383.8 nm), manganese (Mn) (Mn I 403.1 nm), and iron (Fe) (Fe I 407.2 nm) were used as input data for nonlinear multivariate calculation. According to the results of nonlinear regression, the ternary nonlinear regression was the most appropriate of the studied models. A good agreement was observed between the actual concentration provided by inductively coupled plasma mass spectrometry (ICP-MS) and the predicted value obtained using the nonlinear multivariate regression model. The correlation coefficient between predicted concentration and the measured value was 0.987, while the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were reduced to 0.017% and 0.014%, respectively. The ratio of the standard deviation of the validation to the RMSEP increased to 8.79, and the relative error was below 1.21% for nine validation samples. This indicated that the multivariate model can obtain better predicted accuracy than the calibration curve. These results also suggest that the LIBS technique is a powerful tool for analyzing the micro-nutrient elements in soil by selecting calibration and validation samples with similar matrix composition.

Keywords

laser-induced breakdown spectroscopy soil magnesium nonlinear multivariate calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Wiley (2013).Google Scholar
  2. 2.
    R. Noll, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Aapplications, Springer (2012).Google Scholar
  3. 3.
    Madhavi Martin, Rodger C. Martin, Steve Allman, Deanne Brice, Ann Wymore, and Nicolas Andre, Spectrochim. Acta B, 114, 65 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    E. Negre, V. Motto-Ros, F. Pelascini, S. Lauper, D. Denis, and Jin Yu, J. Anal. At. Spectrom., 30, 417 (2015).CrossRefGoogle Scholar
  5. 5.
    Tran X. Phuoc, Ping Wang, and Dustin McIntyre, Fuel, 163, 129 (2016).CrossRefGoogle Scholar
  6. 6.
    F. J. Fortes, M. D. Perez-Carceles, A. Sibon, A. Luna, and J. Javier Laserna, Int. J. Legal Med., 129, 807 (2015).CrossRefGoogle Scholar
  7. 7.
    M. A. Aguirre, E. J. Selva, M. Hidalgo, and A. Canals, Talanta, 131, 348 (2015).CrossRefGoogle Scholar
  8. 8.
    M. A. Gondal, M. A. Shemis, A. A. I. Khalil, M. M. Nasr, and B. Gondal, J. Anal. Atom Spectrom., 31, 506 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Diaz, D. W. Hahn, and A. Molina, Appl. Spectrosc., 66, 99 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    F. C. Alviraa, G. M. Bilmes, T. Floresc, and L. Ponce, Appl. Spectrosc., 69, 1205 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    B. S. Marangoni, K. S. G. Silva, G. Nicolodelli, G. S. Senesi, J. S. Cabral, P. R. Villas-Boas, C. S. Silva, P. C. Teixeira, A. R. A. Nogueira, V. M. Benitesf, and D. M. B. P. Milori, Anal. Methods, 8, 78 (2016).CrossRefGoogle Scholar
  12. 12.
    Krishna K. Ayyalasomayajula, Fang Yu-Yueh, Jagdish P. Singh, Dustin L. McIntyre, Jinesh Jain, Appl. Opt., 51, B149 (2012).CrossRefGoogle Scholar
  13. 13.
    R. S. Bricklemyer, D. J. Brown, J. E. Barefield, and S. M. Clegg, Soil Sci. Soc. Am. J., 75, 1006 (2001).CrossRefGoogle Scholar
  14. 14.
    D. M. Dong, C. J. Zhao, W. G. Zheng, X. D. Zhao, and L. Z. Jiao, Spectrosc Lett., 46, 421 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    Cuiping Lu, Liusan Wang, Haiying Hu, Zhong Zhuang, Yubing Wang, Rujing Wang, and Liangtu Song, Chin Opt Lett., 11, 053004 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    P. R. Villas-Boas, R. Arnon Romano, M. A. de Menezes Franco, E. C. Ferreira, E. José Ferreira, S. Crestana, and D. Marcondes Bastos Pereira Milori, Geoderma, 263, 195 (2016).Google Scholar
  17. 17.
    Wang Shaolong, Wang Yangen, Chen Shanjun, and Chen Qi, Plasma Sci. Technol., 17, 716 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    W. Tawfik, W. A. Farooq, F. N. Al-Mutairi, and Z. A. Alahmed, Laser Eng., 32, 129 (2015).Google Scholar
  19. 19.
    T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. Darby Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, and S. M. Clegg, Spectrochim. Acta B, 107, 1 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    D. L. Death, A. P. Cunningham, and L. J. Pollard, Spectrochim. Acta B, 63, 763 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    M. D. Dyar, M. L. Carmosino, E. A. Breves, M. V. Ozanne, S. M. Clegg, and R. C. Wiens, Spectrochim. Acta B, 70, 51 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    S. Laville, M. Sabsabi, and F. R. Doucet, Spectrochim. Acta B, 62, 1557 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    Feng, L. Li, W. Ni, and Z. Li, J. Anal. At. Spectrom., 26, 2289 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Electric Engineering and AutomationAnhui UniversityHefeiChina
  2. 2.School of Mechanical and Automotive EngineeringHefei University of TechnologyHefeiChina
  3. 3.School of Electronics & Information EngineeringAnhui UniversityHefeiChina

Personalised recommendations