Journal of Applied Spectroscopy

, Volume 83, Issue 6, pp 951–958 | Cite as

Spectroscopic Studies of MnO2 and SiO2 Containing Soil-Active Phosphate Glasses

  • M. SzumeraEmail author
  • B. Łagowska

FT-IR and Raman spectra were measured and structurally interpreted for glasses of the 41P2O5·8SiO2·6K2O·(26 – x) MgO·(19 – y)CaO·(x+y)MnO2 system where 0 ≤ x+y ≤ 40 mol.%, acting as slow-release fertilizers. It was shown that increasing the amount of MnO2 in the structure of the investigated glasses causes their gradual depolymerization, as is particularly apparent in the case of the phospho-oxygen subnetwork. Spectroscopic methods, on the other hand, showed no influence of manganese ions on the silicate subnetwork. Research on the chemical activity of the analyzed glasses conducted under conditions simulating a natural soil environment showed their low solubility with a simultaneous gradual increase in solubility occurring with an increasing number of manganese ions in the glass composition. It was found that this behavior resulted from the formation of less chemically stable bonds of the P–O–Mn2+ type, as compared with bonds of the P–O–Ca2+ and P–O–Mg2+ types. This is consistent with the depolymerizing influence of manganese ions on the analyzed vitreous structure as shown by the FT-IR and Raman spectroscopy and, thus, its weakening.


phosphate glasses manganese ions FT-IR and Raman spectroscopy chemical activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Karabulut, E. Metwalli, D. E. Day, and R. K. Brow, J. Non-Cryst. Solids, 328, 199–206 (2003).Google Scholar
  2. 2.
    D. Toloman, L. M. Giurgiu, and I. Ardelean, Physica B, 404, 4198–4201 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    S. P. Singh, R. P. S. Chakradhar, J. L. Rao, and B. Karmakar, Physica B, 405, 2157–2161 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Singh, R. P. S. Chakradhar, J. L. Rao, and B. Karmakar, J. Alloys Compd., 493, 256–262 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Sankarappa, G. B. Devidas, M. P. Kumar, S. Kumar, and B. V. Kumar, J. Alloys Compd., 469, 576–579 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Srilatha, K. Sambasiva Rao, Y. Gandhi, V. Ravikumar, and N. Veeraiah, J. Alloys Compd., 507, 391–398 (2010).CrossRefGoogle Scholar
  7. 7.
    R. K. Singh and A. Srinivasan. J. Magn. Magn. Mater., 322, 2018–2022 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    P. Pascuta, G. Borodi, A. Popa, V. Dan, and E. Culea, Mater. Chem. Phys., 123, 767–771 (2010).CrossRefGoogle Scholar
  9. 9.
    P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, J. Alloys Compd., 504, 479–483 (2010).CrossRefGoogle Scholar
  10. 10.
    I. Bratu, I. Ardelean, A. Barbu, V. Mih, D. Maniu, and G. Botezan, J. Mol. Struct., 482-483, 689–692 (1999).Google Scholar
  11. 11.
    N. Krishna Mohan, M. Rami Reddy, C. K. Jayasankar, and N. Veeraiah, J. Alloys Compd., 458, 66–76 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Sava, B. A. Sava, L. Boroica, A. Diaconu, L. D. Ursu, and M. Elisa, Efficiency of Vitreous Phospha to-Potassium Fertilizers on Autumn Crops, Scientific Papers, UASVM Bucharest, Series A, Vol. LIII, 2010.Google Scholar
  13. 13.
    G. Hazra, T. Das, and A. Global, J. Sci. Frontier Res. B: Chemistry, 14, No. 4, Version 1.0 (2014).Google Scholar
  14. 14.
    H. Kwan Lee, S. Jian Hwang, and W. Ho Kang, Mater. Sci. Forum, 486487, 407–410 (2005).Google Scholar
  15. 15.
    S. Patterson, The Role of Manganese in Plants — How to Fix Manganese Deficiencies,
  16. 16.
    J. Zarzycki, Glass and Vitreous State, Pergamon Press, Oxford (1991).Google Scholar
  17. 17.
    R. Hill, J. Mater. Sci. Lett., 15, 1122–1125 (1996).Google Scholar
  18. 18.
    J. Oliveira, R. Correia, M. Fernandes, Biomaterials, 23, 371–379 (2002).CrossRefGoogle Scholar
  19. 19.
    Ö. H. Andersson, Guizhi Liu, K. H. Karlsson, L. Niemi, J. Miettinen, J. Juhanoja. J. Mater. Sci., 1, 219–227 (1990).Google Scholar
  20. 20.
    O. Andersson, A. Sodergard, J. Non-Cryst. Solids, 246, 9–15 (1999).Google Scholar
  21. 21.
    S. Kapoor et all, Acta Biomater., 10, 3264–3278 (2014).Google Scholar
  22. 22.
    M. Handke, W. Mozgawa, and M. Nocuń, J. Mol. Struct., 325, 129–136 (1994).Google Scholar
  23. 23.
    T. Litynski, H. Jurgowska, and E. Gorlach, Chemical Analysis for Agriculture, PWN, Warsaw (1976) (in Polish).Google Scholar
  24. 24.
    A. Bartecki and J. Burgess, The Colour of Metal Compounds, Gordon and Breach Science (1993).Google Scholar
  25. 25.
    R. K. Brow, J. Non-Cryst. Solids, 263&264, 1–28 (2000).Google Scholar
  26. 26.
    S. W. Martin, Eur. J. Solid State Inorg. Chem., 28, 163–205 (1991).Google Scholar
  27. 27.
    S. Y. Marzouk, Mater. Chem. Phys., 114, 188–193 (2009).CrossRefGoogle Scholar
  28. 28.
    L. Abbas, L. Bih, A. Nadii, and Y. Elamraui, J. Therm. Anal. Calorim., 90, 453–458 (2007).Google Scholar
  29. 29.
    M. Elisa, B. A. Sava, R. Iordanescu, I. Feraru, C. Vasiliu, M. Calin, A. Diaconu, L. D. Ursu, L. Boroica, Z. Plaiasu, F. Nastase, C. Nastase, A. Dumitru. J. Optoelectron. Adv. Mater., 4, 1301–1303 (2010).Google Scholar
  30. 30.
    F. H. ElBatal, Y. M. Hamdy, and S. Y. Marzouk, J. Non-Cryst. Solids, 355, 2439–2447 (2009).Google Scholar
  31. 31.
    I. R. Chakraborty and R. A. Condrate, Phys. Chem. Glasses, 26, 68–73 (1985).Google Scholar
  32. 32.
    A. F. Wells, Structural Inorganic Chemistry, Vol. 1, Univ. Press, Oxford (1986).Google Scholar
  33. 33.
    L. Stoch and T. Aboud, Ceramics 43, Polish Ceram. Bull., 5, 267–274 (1993).Google Scholar
  34. 34.
    M. Szumera, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 129, 601–608 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    I. Ardelean, S. Cora, R. C. Lucacel, and O. Hulpus, Solid State Sci., 7, 1438–1442 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    J. Sułowska, I. Wacławska, and Z. Olejniczak, Vib. Spectrosc., 65, 44–49 (2013).CrossRefGoogle Scholar
  37. 37.
    M. Sitarz, J. Mol. Struct., 887, 237–248 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    M. Sitarz, J. Non-Cryst. Solids, 357, 1603–1608 (2011).Google Scholar
  39. 39.
    W. Jastrzębski, M. Sitarz, M. Rokita, and K. Bułat, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 79, 722–727 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    J. Šubcík, L. Koudelka, P. Mošner, L. Montagne, G. Tricot, L. Delevoye, and I. Gregora, J. Non-Cryst. Solids, 356, 2509–2516 (2010).Google Scholar
  41. 41.
    M. El Hezzat, M. Et-Tabirou, L. Montagne, E. Bekaert, G. Plavit, A. Mazzah, and P. Dhamelincourt, Mater. Lett., 58, 60–66 (2003).CrossRefGoogle Scholar
  42. 42.
    A. Šantic, A. Moguš-Milankovic, K. Furic, V. Bermanec, C. W. Kim, and D. E. Day, J. Non-Cryst. Solids, 353, 1070–1077 (2007).Google Scholar
  43. 43.
    S. Sreehari Sastry, and B. Rupa Venkateswara Rao, Bull. Mater. Sci., 38, 475–482 (2015).Google Scholar
  44. 44.
    S. Agathopoulos, D.U. Tulyaganov, J. M. G. Ventura, S. Kannan, A. Saranti, M. A. Karakassides, and J. M. F. Ferreira, J. Non-Cryts. Solids, 352, 322–328 (2006).Google Scholar
  45. 45.
    M. Szumera, I. Wacławska, and J. Sułowska, J. Therm. Anal. Cal., 123, 1083–1089 (2016).Google Scholar
  46. 46.
    R. K. Brow, D. R. Tallant, Sharon T. Myers, and C. C. Phifer, J. Non-Cryst. Solids, 191, 45–55 (1995).Google Scholar
  47. 47.
    L. Koudelka, I. Rösslerová, J. Holubová, P. Mošner, L. Montagne, and B. Revel, J. Non-Cryst. Solids, 357, 2816–2821 (2011).Google Scholar
  48. 48.
    N. Santos, K. Yukimitu, A. R. Zanata, and A. C. Hernandes, Nucl. Instrum. Methods, B, 246, 374–378 (2006).Google Scholar
  49. 49.
    C. M. Julien, M. Massot, and C. Poinsignon, Spectrochim. Acta A, 60, 689–700 (2004).ADSCrossRefGoogle Scholar
  50. 50.
    F. H. ElBatal, M. A. Ouis, R. M. Morsi, and S. Y. Marzouk, Philos. Mag., 90, 2905–2924 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    E. Görlich, The Effective Charges and the Electronegativity, Polish Academy of Art and Science, Krakow (1997).Google Scholar
  52. 52.
    L. Stoch, Ceramics, 61, 47–55 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations