Journal of Applied Spectroscopy

, Volume 83, Issue 3, pp 429–436 | Cite as

Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

  • M. V. Makarova
  • A. V. Poberovskii
  • F. Hase
  • Yu. M. Timofeyev
  • Kh. Kh. Imhasin

This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.


atmospheric IR Fourier spectrometry gas composition of the atmosphere IR spectra of direct solar radiation transmission spectra of HBr cells instrument function of Fourier spectrometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Grifiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, John Wiley & Sons, Inc., Hoboken, New Jersey (2007), pp. 1–3.CrossRefGoogle Scholar
  2. 2.
    Observational network IRWG/NDACC:
  3. 3.
    Observational network TCCON:
  4. 4.
    Satellite experiment GOSAT:
  5. 5.
  6. 6.
    Spacecraft Meteor-M No. 2:
  7. 7.
    Remote sensing using aircraft and balloons:
  8. 8.
    Observational network NDACC:
  9. 9.
  10. 10.
    M. V. Makarova, O. Kirner, Yu. M. Timofeev, A. V. Poberovskii, Kh. Kh. Imkhasin, V. I. Osipov, and B. K. Makarov, Izv. Ross. Akad. Nauk, Fiz. Atm. Okeana, 51 (2), 201–209 (2015).Google Scholar
  11. 11.
    Ya. A. Virolainen, Yu. M. Timofeev, A. V. Poberovskii, M. Eremenko, and G. Dufor, Izv. Ross. Akad. Nauk, Fiz. Atm. Okeana, 51 (2), 191–200 (2015).Google Scholar
  12. 12.
    A. V. Polyakov, Yu. M. Timofeev, A. V. Poberovskii, and Ya. A. Virolainen, Opt. Atm. Okeana, 28 (2), 153–158 (2015).Google Scholar
  13. 13.
    M. V. Makarova, O. Kirner, Yu. M. Timofeev, A. V. Poberovskii, Kh. Kh. Imkhasin, V. I. Osipov, and B. K. Makarov, Izv. Ross. Akad. Nauk, Fiz. Atm. Okeana, 51 (2), 493–501 (2015).Google Scholar
  14. 14.
  15. 15.
    N. V. Rokotyan, R. Imasu, V. I. Zakharov, K. G. Gribanov, and M. Yu. Khamatnurova, Opt. Atm. Okeana, 27 (9), 819–825 (2014).Google Scholar
  16. 16.
    E. Sepúlveda, M. Schneider, F. Hase, O. E. García, A. Gomez-Pelaez, S. Dohe, T. Blumenstock, and J. C. Guerra, Atm. Meas. Tech., 5, 1425–1441 (2012).CrossRefGoogle Scholar
  17. 17.
    O. E. García, M. Schneider, A. Redondas, Y. González, F. Hase, T. Blumenstock, and E. Sepúlveda, Atm. Meas. Tech., 5, 2917–2931 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Schneider, E. Sepúlveda, O. García, F. Hase, and T. Blumenstock, Atm. Meas. Tech., 3, 1785–1795 (2010).CrossRefGoogle Scholar
  19. 19.
    N. M. Gavrilov, M. V. Makarova, A. V. Poberovskii, and Yu. M. Timofeyev, Atm. Meas. Tech., 7, 1003–1010 (2014).CrossRefGoogle Scholar
  20. 20.
    T. Kerzenmacher, B. Dils, N. Kumps, T. Blumenstock, C. Clerbaux, P.-F. Coheur, P. Demoulin, O. García, M. George, D. W. T. Griffith, F. Hase, J. Hadji-Lazaro, D. Hurtmans, N. Jones, E. Mahieu, J. Notholt, C. Paton-Walsh, U. Raffalski, T. Ridder, M. Schneider, C. Servais, and M. De Mazière, Atm. Meas. Tech., 5, 2751–2761 (2012).CrossRefGoogle Scholar
  21. 21.
    S. Takele Kenea, G. Mengistu Tsidu, T. Blumenstock, F. Hase, T. von Clarmann, and G. P. Stiller, Atm. Meas. Tech., 6, 495–509 (2013).CrossRefGoogle Scholar
  22. 22.
    Ya. Virolainen, Yu. Timofeyev, A. Polyakov, D. Ionov, and A. Poberovsky, Int. J. Remote Sens., 35 (15), 5677–5697 (2014).Google Scholar
  23. 23.
    R. Sussmann, F. Forster, M. Rettinger, N. Jones, Atm. Meas. Tech., 4, 1943–1964 (2011).CrossRefGoogle Scholar
  24. 24.
    F. Hase, Atm. Meas. Tech., 5, 603–610 (2012).CrossRefGoogle Scholar
  25. 25.
    F. Hase, T. Blumenstock, and C. Paton-Walsh, Appl. Opt., 38, 3417–3422 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    A. Goldman, M. T. Coffey, J. W. Hannigan, W. G. Mankin, K. V. Chance, and C. P. Rinsland, JQSRT, 82, 313–317 (2003).ADSCrossRefGoogle Scholar
  27. 27.
  28. 28.
    A. V. Poberovskii, Opt. Atm. Okeana, 23 (1), 56–58 (2010).Google Scholar
  29. 29.
    L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, JQSRT, 110, 533–572 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    C. Bernardo and D. W. T. Griffith, JQSRT, 95, 141–150 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. V. Makarova
    • 1
  • A. V. Poberovskii
    • 1
  • F. Hase
    • 2
  • Yu. M. Timofeyev
    • 1
  • Kh. Kh. Imhasin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Meteorology and Climate Research, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations