Advertisement

Journal of Applied Spectroscopy

, Volume 83, Issue 3, pp 422–428 | Cite as

Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

  • A. SamadiEmail author
  • M. Amjadi
Article

Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5–6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0–500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

Keywords

halloysite nanotubes solid phase extraction iron spectrophotometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Brondani, C. W. Scheeren, J. Dupont, and I. C. Vieira, Analyst, 137, 3732–3739 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Zhao, E. Abdullayev, A. Vasiliev, and Y. Lvov, J. Colloid Interface Sci., 406, 121–129 (2013).CrossRefGoogle Scholar
  3. 3.
    Y. Dong, Z. Liu, and L. Chen, J. Radioanal. Nucl. Chem., 292, 435–443 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Li, F. Wen, L. Pan, Z. Liu, and Y. Dong, J. Radioanal. Nucl. Chem., 295, 431–438 (2013).CrossRefGoogle Scholar
  5. 5.
    G. Kiani, Appl. Clay Sci., 90, 159–164 (2014).CrossRefGoogle Scholar
  6. 6.
    Z. Marczenko and E. Kloczko, Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, Elsevier Science (2000).Google Scholar
  7. 7.
    S. Abe, J. Mochizuki, and T. Sone, Anal. Chim. Acta, 319, 387–392 (1996).CrossRefGoogle Scholar
  8. 8.
    J. Jayachandran, Talanta, 44, 1285–1290 (1997).CrossRefGoogle Scholar
  9. 9.
    M. R. Moghadam, A. M. H. Shabani, and S. Dadfarnia, J. Hazard. Mater., 197, 176–182 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Rohani Moghadam, A. M. Haji Shabani, and S. Dadfarnia, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 135, 929–934 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    C. B. Ojeda and F. S. Rojas, Anal. Bioanal. Chem., 394, 759–782 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Pytlakowska, V. Kozik, and M. Dabioch, Talanta, 110, 202–228 (2013).CrossRefGoogle Scholar
  13. 13.
    H. Filik and D. Giray, Food Chem., 130, 209–213 (2012).CrossRefGoogle Scholar
  14. 14.
    M. A. Kassem and A. S. Amin, Food Chem., 141, 1941–1946 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. Yamini and N. Amiri, J. AOAC Int., 84, 713–718 (2001).Google Scholar
  16. 16.
    V. Camel, Solid Phase Extract. Trace Element., 58, 1177–1233 (2003).Google Scholar
  17. 17.
    S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponi, and J. F. Callan, Chem. Soc. Rev., 41, 7195–7227 (2012).CrossRefGoogle Scholar
  18. 18.
    E. Coni, A. Bocca, D. Ianni, and S. Caroli, Food Chem., 52, 123–130 (1995).CrossRefGoogle Scholar
  19. 19.
    E. Coni, S. Caroli, D. Ianni, and A. Bocca, Food Chem., 50, 203–210 (1994).CrossRefGoogle Scholar
  20. 20.
    R. O. James and M. G. MacNaughton, Geochim. Cosmochim. Acta, 41, 1549–1555 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Liu, P. Liang, and L. Guo, Talanta, 68, 25–30 (2005).CrossRefGoogle Scholar
  22. 22.
    E. Erdem, N. Karapinar, and R. Donat, J. Colloid Interf. Sci., 280, 309–314 (2004).CrossRefGoogle Scholar
  23. 23.
    H. A. Elliott and C. P. Huang, Environ. Int., 2, 145–155 (1979).CrossRefGoogle Scholar
  24. 24.
    Y. M. Lvov, D. G. Shchukin, H. Möhwald, and R. R. Price, ACS Nano, 2, 814–820 (2008).CrossRefGoogle Scholar
  25. 25.
    F. W. Cagle and G. F. Smith, Anal. Chem., 19, 384–385 (1947).CrossRefGoogle Scholar
  26. 26.
    M. Alvand and F. Shemirani, Microchim. Acta, 181, 181–188 (2014).CrossRefGoogle Scholar
  27. 27.
    P. K. Tarafder and R. Thakur, Microchem. J., 80, 39–43 (2005).CrossRefGoogle Scholar
  28. 28.
    M. A. Akl, Microchem. J., 75, 199–209 (2003).CrossRefGoogle Scholar
  29. 29.
    A. B. Tabrizi, J. Hazard. Mater., 183, 688–693 (2010).CrossRefGoogle Scholar
  30. 30.
    B. Peng, Y. Shen, Z. Gao, M. Zhou, Y. Ma, and S. Zhao, Food Chem., 176, 288–293 (2015).CrossRefGoogle Scholar
  31. 31.
    N. Pourreza, S. Rastegarzadeh, A. R. Kiasat, and H. Yahyavi, J. Spectrosc., 2013, 1–6 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of TabrizTabrizIran

Personalised recommendations