Journal of Applied Spectroscopy

, Volume 80, Issue 5, pp 698–706 | Cite as

Resonance Fluorescence of Optically Dense Ensembles of Three-Level Resonant Centers Under Conditions of Energy-Level Population Auto-Oscillations*

Article
  • 60 Downloads

A consistent theoretical approach for analyzing the dynamics of three-level resonant centers interacting locally with a laser field was presented. The formalism was based on the behavior of a density matrix for an optically dense ensemble of multi-level resonant centers in an external field. It was shown that the influence of the local field on the ensemble dynamics in an external field of constant intensity that resulted in the well-known intrinsic (non-cavity) optical bistability could also be a reason for auto-oscillations of the level populations. As a result, new components appeared in the resonance fluorescence spectra as compared with the spectrum of a single resonant center.

Keywords

resonance fluorescence three-level V-type resonant centers local field optically dense ensemble auto-oscillations level population fluorescence spectrum bistability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, Chichester, Engl. (1975).Google Scholar
  2. 2.
    F. Ciccarello, A. Napoli, A. Messina, and S. R. Luthi, J. Opt. B: Quantum Semiclassical Opt., 6, No. 3, S118 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    C. M. Bowden and J. P. Dowling, Phys. Rev. A: At., Mol., Opt. Phys., 47, 1247–1251 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    M. Born and E. Wolf, Principles of Optics; Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, New York (1970).Google Scholar
  5. 5.
    M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett., 68, 911–914 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Quantum Opt., 6, 371–380 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Dowling and C. M. Bowden, Phys. Rev. Lett., 70, 1421–1424 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett., 85, 1851–1854 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    J. T. Manassah and I. Gladkova, Opt. Commun., 196, 221–228 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Afanas’ev, R. A. Vlasov, O. K. Khasanov, T. V. Smirnova, and O. M. Fedotova, J. Opt. Soc. Am. B: Opt. Phys., 19, 911–919 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    E. C. Jarque and V. Malyshev, Opt. Commun., 142, 66–70 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    V. Malyshev and E. C. Jarque, J. Opt. Soc. Am. B: Opt. Phys., 14, 1167–1178 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    M. P. Hehlen, H. U. Gudel, Q. Shu, J. Rai, S. Rai, and S. C. Rand, Phys. Rev. Lett., 73, 1103–1106 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    M. P. Hehlen, H. U. Gudel, Q. Shu, and S. C. Rand, J. Chem. Phys., 104, 1232–1244 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, Phys. Rev. Lett., 67, 972–975 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    V. N. Lisitsyn and V. P. Chebotaev, Pisma Zh. Eksp. Teor. Fiz., 7, 3–6 (1968).Google Scholar
  17. 17.
    V. N. Lugovoi, Kvantovaya Elektron. (Moscow), 6, 2053–2077 (1979).ADSGoogle Scholar
  18. 18.
    H. Haken, Laser Light Dynamics, North-Holland Publ., Amsterdam (1986).Google Scholar
  19. 19.
    S. P. Kuznetsov, Dynamic Chaos [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  20. 20.
    R. A. Vlasov, A. M. Lemeza, and M. G. Gladush, Laser Phys. Lett., 10, 045401(1–7) (2013).Google Scholar
  21. 21.
    A. I. Zaitsev and I. V. Ryzhov, Opt. Spektrosk., 89, 655–665 (2000).CrossRefGoogle Scholar
  22. 22.
    A. I. Zaitsev, I. V. Ryzhov, E. D. Trifonov, and V. A. Malyshev, Opt. Spektrosk., 87, 827–835 (1999).Google Scholar
  23. 23.
    V. A. Malyshev, F. Carreno, M. A. Anton, O. G. Calderon, and F. Dominguez-Adame, J. Opt. B: Quantum Semiclassical Opt., 5, 313–321 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    M. G. Gladush, Influence of Self-Consistent Field Effects on Spectral and Field Characteristics of Resonant Light Scattering [in Russian], Candidate Dissertation in Physical-Mathematical Sciences, Moscow (2006).Google Scholar
  25. 25.
    M. G. Gladush, D. V. Kuznetsov, and V. K. Roerich, Eur. Phys. J. D, 64, Nos. 2–3, 511–520 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    O. G. Calderon, M. A. Anton, and F. Carreno, Eur. Phys. J. D, 25, No. 1, 77–87 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    V. Iyyanki and G. S. Jyotsna, Phys. Rev. A: At., Mol., Opt. Phys., 53, 1690–1696 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods [in Russian], Binom, Moscow (2001).Google Scholar
  29. 29.
    R. Sharma and O. P. Sha, Int. J. Comput. Appl. Technol. Archive, 28, 240–253 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of Physics, National Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Spectroscopy, Russian Academy of SciencesTroitskRussia

Personalised recommendations