Journal of Applied Spectroscopy

, Volume 80, Issue 5, pp 644–650 | Cite as

Changes in the Vibrational Spectra of Zeolites Due to Sorption of Heavy Metal Cations

  • M. KrólEmail author
  • W. Mozgawa
  • K. Barczyk
  • T. Bajda
  • M. Kozanecki

This work presents the results of spectroscopic (MIR and Raman) studies of zeolite structures after immobilization of heavy metal cations from aqueous solutions. The sorption of Ag+, Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions has been conducted on zeolites belonging to different structural groups, i.e., sodium forms of natural chabazite, mordenite, ferrierite, and clinoptilolite, as well as on synthetic zeolite Y. Systematic changes in intensities and positions of the bands corresponding to the characteristic ring vibrations have been observed in the measured spectra. The most visible changes are observed in the FT-IR spectra of the samples in the range of 850–450 cm–1, and in the Raman spectra in the range of 600–250 cm–1. Depending on the zeolite structure, the bands, which can be regarded as a kind of indicator of ion exchange, were indentifi ed. For example, in the case of IR spectra, these bands are at 766, 703, 648, 578, and 506 cm–1 for zeolite Y, at 733 and 560 cm–1 for mordenite, at 675 cm–1 for clinoptilolite, etc. The degree of changes depends on both the type of cation and its concentration in the initial solution. This is connected with the way of binding of metal ions to the zeolite aluminosilicate framework, i.e., a proportion of the ion exchange and chemisorption in the process. Cations mainly undergoing ion exchange, such as Cd2+ or Pb2+, have the greatest impact on the character of the spectra. On the other hand, Cr3+ ions practically do not modify the spectra of zeolites. Results of IR and Raman spectroscopic studies have been compared with those obtained by atomic absorption spectroscopy (AAS), from which the proportion of ion exchange to chemisorption in the process and the effective cation exchange capacity of the individual samples have been estimated.


zeolite IR spectra Raman spectra sorption heavy metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. E. Bailey, T. J. Olin, R. M. Bricka, D. D. Adrian, Water Res., 33, 2469–2479 (1999).CrossRefGoogle Scholar
  2. 2.
    E. A. Jenne, In: Adsorption of Metals by Geomedia: Variables Mechanism and Model Applications, Academic, San Diego, 11–36 (1998).Google Scholar
  3. 3.
    M. B. McBride, In: Handbook of Soil Science, CRC Press, New York, 1–22 (2000).Google Scholar
  4. 4.
    A. Godelitsas, In: Natural Microporous Materials in Environmental Technology, Kluwer, Dordrecht, 271–282 (1999).Google Scholar
  5. 5.
    V. J. Inglezakis, K. J. Hadjiandreou, N. A. Diamandis, M. D. Loizidou, H. P. Grigoropoulou, Water Resour., 35, 2161–2166 (2001).Google Scholar
  6. 6.
    M. J. Zamzow, B. R. Eichbaum, K. R. Sandgren, D. E. Shanks, Sep. Sci. Technol., 25, 1555–1569 (1990).CrossRefGoogle Scholar
  7. 7.
    M. Panayotova, B. Velikov, J. Environ. Sci. Health, A37, No. 2, 139–147 (2002).CrossRefGoogle Scholar
  8. 8.
    W. Mozgawa, T. Bajda, J. Mol. Struct., 792, 170–175 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    W. Mozgawa, M. Król, T. Bajda, J. Mol. Struct., 924-926, 427–433 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Król, W. Mozgawa, W. Jastrzębski, K. Barczyk, Micropor. Mesopor. Mater., 156, 181–188 (2012).CrossRefGoogle Scholar
  11. 11.
    P. P. Knops-Gerrits, D. E. De Vos, E.J.P. Feijen, P. A. Jacobs, Micropor. Mater., 8, 3–17 (1997).CrossRefGoogle Scholar
  12. 12.
    A. Langella, M. Pansini, P. Cappelletti, B. de’Gennaro, M. de’Gennaro, C. Colella, Micropor. Mesopor. Mater., 37, 337–343 (2000).CrossRefGoogle Scholar
  13. 13.
    D.W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York–London–Sydney–Toronto (1974).Google Scholar
  14. 14.
  15. 15.
    M. S. Berber-Mendoza, R. Leyva-Ramos, P. Alonso-Davila, J. Mendoza-Barron, P. E. Diaz-Flores, J. Chem. Technol. Biotechnol., 81, 966–973 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Leyva-Ramos, L. A. Bernal-Jacome, J. Mendoza-Barron, L Fuentes-Rubio, R. M Guerrero-Coronado, J. Hazard. Mater., 90, 27–38 (2002).CrossRefGoogle Scholar
  17. 17.
    J. D. Cuppett, S. E. Duncan, A. M. Dietrich, Chem. Senses, 31, 689–697 (2006).CrossRefGoogle Scholar
  18. 18.
    H. B. Bradl, J. Colloid Interface Sci., 277, 1–18 (2004).CrossRefGoogle Scholar
  19. 19.
    W. N. Delgass, G. L. Haller, R. Kellermann, J. H. Lunsford, Spectroscopy in Heterogeneous Catalysis, Academic Press, New York, 58 (1979).CrossRefGoogle Scholar
  20. 20.
    H. G. Karge, E. Geidel, In: Molecular Sieves Science and Technology. Characterization I, Springer-Verlag, Berlin, Heidelberg, 1–200 (2004).Google Scholar
  21. 21.
    P. Bornhauser, G. Calzaferri, J. Phys. Chem., 100, 2035–2044 (1996).CrossRefGoogle Scholar
  22. 22.
    K. S. Smirnov, D. Bougeard, J. Mol. Struct., 348, 155–158 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    G. Schrimpf, M. Schlenkrich, J. Brickmann, P. Boff, J. Phys. Chem., 96, 7404–7410 (1992).CrossRefGoogle Scholar
  24. 24.
    G. Rodriguez-Fuentes, A. R. Ruiz-Salvador, M. Mir, O. Picazo, G. Quintana, M. Delgado, Micropor. Mesopor. Mater., 20, 269–281 (1998).CrossRefGoogle Scholar
  25. 25.
    P. K. Dutta, K. M. Rao, J. Y. Park, J. Phys. Chem., 95, 6654–6656 (1991).CrossRefGoogle Scholar
  26. 26.
    A. J. M. de Man, R. A. van Santen, Zeolites, 12, 269–279 (1992).CrossRefGoogle Scholar
  27. 27.
    R. Ferwerda, J. H. van der Maas, Spectrochim. Acta, A, 51, 2147–2159 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    W. Mozgawa, W. Jastrzębski, M. Handke, J. Mol. Struct., 744–747, 663–670 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Król
    • 1
    Email author
  • W. Mozgawa
    • 1
  • K. Barczyk
    • 1
  • T. Bajda
    • 1
  • M. Kozanecki
    • 2
  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Lodz University of TechnologyLodzPoland

Personalised recommendations