Advertisement

Journal of Applied Spectroscopy

, Volume 80, Issue 3, pp 449–457 | Cite as

Characterization of semiconductor devices and wafer materials via sub-nanosecond time-correlated single-photon counting

  • V. Buschmann
  • H. Hempel
  • A. Knigge
  • C. Kraft
  • M. Roczen
  • M. Weyers
  • T. Siebert
  • F. Koberling
Article

Time-correlated single-photon counting (TCSPC) of semiconductor photoluminescence is presented as a versatile technique for addressing diverse aspects of charge carrier dynamics on a pico- to microsecond timescale. Particularly, advantages of expanding this time-domain technique with spectral and spatial resolution are demonstrated. By differentiating the spectral channels within the photoluminescence signal, dynamics of the charge carriers can be correlated to particular materials and substructures for analyzing their functions in complex, multicomponent systems. Diffusion and transport phenomena become directly accessible, and localized variations of charge carrier lifetimes can be associated with a particular morphology when the measurements are carried out in the context of microscopic imaging. These general capabilities are demonstrated specifi cally on a GaAsP quantum well embedded both in an AlGaAs layer structure and in a multi-layer CdTe-CdS heterojunction system.

Keywords

semiconductor devices sub-nanosecond time correlation single photon time-resolved photoluminescence (TRPL) sub-nanosecond time correlated single photon counting (TCSPC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., New Jersey, Wiley (2007).Google Scholar
  2. 2.
    R. K. Ahrenkiel, N. Calla, S. W. Johnston, and W. K. Metzger, Sol. Energy Mater. Sol. Cells, 94, 2197–2204 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, Springer Series in Materials Science, Berlin, Springer (2010).Google Scholar
  4. 4.
    P. V. Santos, F. Alsina, S. K. Zhang, R. Hey, A. García-Cristóbal, and A. Cantarero, Physica E, 13, 467–472 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    W. K. Metzger, D. Albin, D. Levin, P. Sheldon, X. Li, B. M. Keyes, and R. K. Ahrenkiel, J. Appl. Phys. 94, 3549–3555 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, Proc. SPIE Int. Soc. Opt. Eng., 6461, 646109 (2007).CrossRefGoogle Scholar
  7. 7.
    B. M. Keyes, P. Dippo, W. K. Metzger, J. AbuSchama, and R. Noufi , J. Appl. Phys. 94, 5584–5591 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    H.-M. Cheng and F.-W. Hsieh, Nanotechnology, 21, 485202 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. Douhal, C. Martin, M. Ziolek, and M. J. Marchena, J. Phys. Chem. C, 115, 23183–23191 (2011).CrossRefGoogle Scholar
  10. 10.
    H.-J. Huang, F.-C. Chien, P. Chen, K.-C. Ho, and C.-W. Chu, Anal. Chem., 82, 01669–01673 (2010).CrossRefGoogle Scholar
  11. 11.
    J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, Nano, 5, 959–967 (2011).Google Scholar
  12. 12.
    S. Itzhakov, S. Buhbut, E. Tauber, T. Geiger, A. Zaban, and D. Oron, Adv. Energy Mater., 1, 626–633 (2011).CrossRefGoogle Scholar
  13. 13.
    Z. Bian, T. Tachikawa, S.-C. Cui, M. Fujitsuka, and T. Majima, Chem. Sci., 3, 0370–0379 (2012).CrossRefGoogle Scholar
  14. 14.
    W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics, Berlin, Springer (2005). CrossRefGoogle Scholar
  15. 15.
    G. Erbert, F. Bugge, A. Knauer, J. Sebastian, A. Thies, H. Wenzel, M. Weyers, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron., 5, 780 (1999).CrossRefGoogle Scholar
  16. 16.
    H. Wenzel, G. Erbert, F. Bugge, A. Knauer, J. Maege, J. Sebastian, R. Staske, K. Vogel, and G. Tränkle, Proc. SPIE Int. Soc. Opt. Eng., 3947, 32–39 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    A. Knauer, F. Bugge, G. Erbert, H. Wenzel, K. Vogel, U. Zeimer, and M. Weyers, J. Electron. Mater., 29, 53–56 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    P. Crump, H. Wenzel, G. Erbert, P. Ressel, M. Zorn, F. Bugge, S. Einfeldt, R. Staske, U. Zeimer, A. Pietrzak, and G. Tränkle, IEEE Photonics Technol. Lett., 20, 1378–1380 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    J. Sebastian, G. Beister, F. Bugge, F. Buhrandt, G. Erbert, H. G. Hänsel, R. Hülsewede, A. Knauer, W. Pittroff, R. Staske, M. Schröder, H. Wenzel, M. Weyers, and G. Tränkle, IEEE J. Sel. Top. Quantum Electron., 7, 334–339 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Hädrich, H. Metzner, U. Reislöhner, and C. Kraft, Sol. Energy Mater. Sol. Cells, 95, 887–893 (2011).CrossRefGoogle Scholar
  21. 21.
    B.E. McCandless and R.W. Birkmire, Solar Cells, 31, 527–535 (1991).CrossRefGoogle Scholar
  22. 22.
    W. K. Metzner, D. Albin, M. J. Romero, P. Dippo, and M. Young, J. Appl. Phys., 99, 103703 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    V. Yu. Timoshenko, A.B. Petrenko, M. N. Stolyarov, T. Dittrich, W. Fuessel, and J. Rappich, J. Appl. Phys., 85, 4171–4175 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    M. Roczen, E. Malguth, M. Schade, A. Schöpke, A. Laades, M. Blech, O. Gref, T. Barthel, J. A. Töfflinger, M. Schmidt, H. S. Leipner, L. Korte, and B. Rech, J. Non-Cryst. Sol., 358, 2253–2256 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. Buschmann
    • 1
  • H. Hempel
    • 2
  • A. Knigge
    • 3
  • C. Kraft
    • 2
  • M. Roczen
    • 4
  • M. Weyers
    • 3
  • T. Siebert
    • 1
  • F. Koberling
    • 1
  1. 1.PicoQuant GmbHBerlinGermany
  2. 2.Institut für FestkörperphysikFriedrich Schiller Universität JenaJenaGermany
  3. 3.Ferdinand Braun InstitutLeibniz Institut für HöchstfrequenztechnikBerlinGermany
  4. 4.Helmholtz Zentrum Berlin für Materialien und EnergieInstitut für Silizium PhotovoltaikBerlinGermany

Personalised recommendations