Journal of Applied Spectroscopy

, Volume 79, Issue 5, pp 695–707

Raman spectra of tetraoxa[8]circulenes. p-dinaphthalenodiphenylenotetrafuran and its tetraalkyl derivatives (DFT study and experiment)

  • V. A. Minaeva
  • B. F. Minaev
  • G. V. Baryshnikov
  • O. N. Romeyko
  • M. Pittelkow
Article
  • 92 Downloads

The equilibrium molecular geometry, harmonic vibrational frequencies, and Raman band intensities were calculated by the density functional theory B3LYP method with the 6-31G(d) basis set for tetraoxa[8]circulenes p-dinaphthalenodiphenylenotetrafuran (p-2B2N) and p-dinaphthaleno-2,3,10,11-tetraethyldiphenylenotetrafuran (p-2B2N4R, R = C2H5) whose molecules belong to D2h and D2 point group symmetry. All bands in the measured Raman spectrum of p-dinaphthaleno-2,3,10,11-tetraundecyldiphenylenotetrafuran (p-2B2N4R, R = n-C11H23) were assigned based on quantum-chemical calculations of the frequencies and normal vibration modes of the molecule. A comparison of the calculated vibrational spectra with those from the experiment made it possible to assign reliably all observed bands in the Raman spectrum. Results of quantum-chemical calculations were in good agreement with the experimental data.

Keywords

tetraoxa[8]circulene DFT/B3LYP/6-31G(d) calculations density functional theory Raman spectrum point group symmetry benzene naphthalene furan. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Erdtman and H. E. Hogberg, Chem. Commun., 773–774 (1968).Google Scholar
  2. 2.
    K. Yu. Chernichenko, V. V. Sumerin, R. V. Shpanchenko, E. S. Balenkova, and V. G. Nenajdenko, Angew. Chem., Int. Ed., 45, No. 44, 7367–7370 (2006).CrossRefGoogle Scholar
  3. 3.
    K. Yu. Chernichenko, E. S. Balenkova, and V. G. Nenajdenko, Mendeleev Commun., 18, No. 4, 171–179 (2008).CrossRefGoogle Scholar
  4. 4.
    C. B. Nielsen, T. Brock-Nannestad, T. K. Reenberg, P. Hammershoj, J. B. Christensen, J. W. Stouwdam, and M. Pittelkow, Chem. Eur. J., 16, No. 44, 13030–13034 (2010).CrossRefGoogle Scholar
  5. 5.
    J. Eskildsen, T. Reenberg, and J. B. Christensen, Eur. J. Org. Chem., 2000, No. 8, 1637–1640 (2000).CrossRefGoogle Scholar
  6. 6.
    T. Brock-Nannestad, C. B. Nielsen, M. Schau-Magnussen, P. Hammershoj, T. K. Reenberg, A. B. Petersen, D. Trpcevski, and M. Pittelkow, Eur. J. Org. Chem., No. 31, 6320–6325 (2011).Google Scholar
  7. 7.
    A. Dadvand, F. Cicoira, K. Yu. Chernichenko, E. S. Balenkova, R. M. Osuna, F. Rosei, V. G. Nenajdenko, and D. F. Perepichka, Chem. Commun., No. 42, 5354–5356 (2008).Google Scholar
  8. 8.
    B. F. Minaev, G. V. Baryshnikov, and V. A. Minaeva, Comput. Theor. Chem., 972, No. 1–3, 68–74 (2011).CrossRefGoogle Scholar
  9. 9.
    V. A. Minaeva, B. F. Minaev, G. V. Baryshnikov, H. Agren, and M. Pittelkow, Vib. Spetrosc., 61, 156–166 (2012).CrossRefGoogle Scholar
  10. 10.
    B. O. Minaeva, B. P. Minaev, G. V. Barynishkov, O. M. Romeiko, and M. Pittelkow, Visn. Cherkas. Univ., Ser. Khim. Nauk, 227, No. 14, 39–59 (2012).Google Scholar
  11. 11.
    M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, J. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, R. J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, and J. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford CT (2004).Google Scholar
  12. 12.
    A. P. Scott, J. Phys. Chem., 100, No. 41, 16502–16513 (1996).CrossRefGoogle Scholar
  13. 13.
    P. L. Polavarapu, J. Phys. Chem., 94, 8106–8112 (1990).Google Scholar
  14. 14.
    G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, and J. R. Durig, Spectrochim. Acta, 49, 2007–2026 (1993).CrossRefGoogle Scholar
  15. 15.
    S. I. Gorelsky, SWizard Program, University of Ottawa, Ottawa, Canada (2010); http://www.sg-chem.net/
  16. 16.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies — Tables and Charts, 3rd Ed., J. Wiley & Sons, Chichester (2001), pp. 54, 158–160.Google Scholar
  17. 17.
    The official web site of the National Institute of Advanced Industrial Science and Technology (AIST), Research Information Database (RIO-DB); http://riodb.ibase.aist.go.jp/riohomee.html

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. A. Minaeva
    • 1
  • B. F. Minaev
    • 1
  • G. V. Baryshnikov
    • 1
  • O. N. Romeyko
    • 1
  • M. Pittelkow
    • 2
  1. 1.Bohdan Khmelnytsky National University of CherkassyCherkassyUkraine
  2. 2.Copenhagen UniversityCopenhagenDenmark

Personalised recommendations