Journal of Applied Spectroscopy

, Volume 78, Issue 6, pp 855–860 | Cite as

Stoichiometric transfer by infrared pulsed laser deposition of y-doped Bi–Sr–Ca–Cu–O investigated using time-resolved optical emission spectroscopy

  • J. D. R. Vitug
  • J. C. De Vero
  • G. R. S. Blanca
  • R. V. Sarmago
  • W. O. Garcia

Pulsed laser deposition of Bi2Sr2Ca1–xYxCu2O8+δ (Bi-22Y2) with x = 0, 0.30, and 0.49 on an MgO (100) substrate was conducted using a Q-switched 1064 nm Nd:YAG laser The laser-produced plasma (LPP) emission was collected during the deposition. Time-resolved optical emission spectroscopy reveals that the plasma plume consists of neutral atoms and ions. SEM images indicate that clusters of correct stoichiometry arrive on the substrate surface. Our result confirms that IR PLD transfers material stoichiometrically.


pulsed laser deposition plasma diagnostic techniques and instrumentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. B. Chrisey, G. K. Hubler, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, Inc. (1994).Google Scholar
  2. 2.
    R. Eason, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, Inc., Hoboken (2007).Google Scholar
  3. 3.
    A. N. Jannah, S. A. Halim, and H. Abdullah, Eur. J. Sci. Res., 29, No 4, 438–446 (2009).Google Scholar
  4. 4.
    M. Yavuz, K. K. Uprety, G. Subramanian, and P. Paliwal, IEEE Trans. Appl. Supercond, 13, No 2, 3295–3297 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Ichino, Y. Yoshida, T. Yoshimura, Y. Takai, M. Yoshizumi, T. Izumi, and Y. Shiohara, Physica, C, 470, 1234–1237 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    J. C. De Vero, J. F. Gabayno, W. O. Garcia, and R. V. Sarmago, Physica, C, 470, 149–154 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    L. Bonoldi, G. L. Calestani, M. G. Francesconi, G. Salsi, M. Sparpaglione, and L. Zini, Physica, C, 241, 37–44 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    N. Asano, K. Shinohara, N. Matsunami, and Y. Takai, Supercond. Sci. Technology, 12, 203–209 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, Spectrochim. Acta, B, 65, 636–641 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    J. Gonzalo and C. N. Afonso, J. Appl. Phys., 79, 8042–8046 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    V. N. Rai and S. N. Thakur, In “Laser induced breakdown spectroscopy”, Eds. J. Singh and S. Thakur, Ch 4, Elsevier, 83–111 (2007).Google Scholar
  12. 12.
    C. Aragon, V. Madurga, and J.A. Aguilera, Appl. Surf. Sci., 197–198, 217–223 (2002).CrossRefGoogle Scholar
  13. 13.
    S. Hafeez, N. M. Shaikh, B. Rashid, and M. A. Baig, J. Appl. Phys., 103, 83117-1–83117-8 (2008).Google Scholar
  14. 14.
    C. Pasquini, J. Cortez, L. Silva, and F. Gonzaga, J. Braz. Chem. Soc., 18, No 3, 463–512 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Ralchenko, A. Kramida, and J. Reader, NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5); National Institute of Standards and Technology, Gaithersburg, MD (2009)
  16. 16.
    Neutron News, 3, No 3, 29–37 (1992) National Institute of Standards and Technology;
  17. 17.
    J. C. Muller and R. F. Haglund Jr., Laser Ablation and Desorption, Academic Press, USA, 35 (1998).Google Scholar
  18. 18.
    J. D. Pedarniga, J. Heitz, T. Stehrer, B. Praher, R. Viskup, K. Siraj, A. Moser, A. Vlad, M. A. Bodea, D. Bäuerle, N. Hari Babu, and D. A. Cardwell, Spectrochim. Acta, B, 63, 1117–1121 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    J. C. De Vero, G. R. S. Blanca, J. R. Vitug, W. O. Garcia, and R. V. Sarmago, Physica, C, 471, 378–383 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • J. D. R. Vitug
    • 1
  • J. C. De Vero
    • 1
  • G. R. S. Blanca
    • 1
  • R. V. Sarmago
    • 1
  • W. O. Garcia
    • 1
  1. 1.National Institute of PhysicsUniversity of the Philippines-DilimanQuezon CityPhilippines

Personalised recommendations