Journal of Applied Spectroscopy

, Volume 78, Issue 5, pp 751–754 | Cite as

Quantum mechanical interpretation of the IR Spectrum of 2-deoxy-D-ribose in the oh group stretching vibration region

  • T. Yu. Nikolaenko
  • L. A. Bulavin
  • D. N. Govoruna
Article

Within MP2/6-311++G(d,p)//DFT B3LYP/6-31 G(d,p) theory, taking into account the anharmonicity of the vibrations, we have calculated the vibrational spectra of all the conformers of the furanose, pyranose, and linear forms of the 2-deoxy-D-ribose molecule. Based on the calculation, we have interpreted the experimental IR spectrum of this molecule in the region of stretching vibrations of the OH groups. For the α and β anomers of the pyranose form of the molecule, we observe and explain the difference between the populations realized in the experiment and the calculated thermodynamic equilibrium values. We present the structures of the eight isomers of 2-deoxy-D-ribose determining its IR spectrum in a low-temperature inert matrix.

Keywords

2-deoxy-D-ribose matrix isolation infrared spectroscopy stretching vibrations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Cortes, T. L. Mega, and R. L. Van Etten, J. Org. Chem., 56, 943–947 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Furberg, Acta Chem. Scandinav., 14, 1357–1363 (1960).CrossRefGoogle Scholar
  3. 3.
    M. N. Schuchmann and C. von Sonntag, Z. Naturforsch., 36b, 726–731 (1981).Google Scholar
  4. 4.
    L. A. Loeb and B. D. Preston, Ann. Rev. Genet., 20, 201–230 (1986).CrossRefGoogle Scholar
  5. 5.
    M. Lukin and C. de Los Santos, Chem. Rev., 106, 607–686 (2006).CrossRefGoogle Scholar
  6. 6.
    R. G. Zhbankov, L. K. Prihodchenko, T. E. Kolosova, V. M. Andrianov, M. V. Korolevich, H. Ratajczak, and M. Marchevka, J. Mol. Struct., 450, 29–40 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    R. G. Zhbankov, S. P. Firsov, E. V. Korolik, P. T. Petrov, M. P. Lapkovskii, V. M. Tsarenkov, M. K. Marchewka, and H. Ratajczak, J. Mol. Struct., 555, 85–96 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    R. G. Zhbankov, S. P. Firsov, T. E. Kolosova, L. K. Prihodchenko, D. D. Grinshpan, J. Baran, M. K. Marchewka, and H. Ratajczak, J. Mol. Struct., 656, 275–286 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    R. G. Zhbankov, M. V. Korolevich, B. G. Derendyaev, and V. N. Piottukh-Peletsky, J. Mol. Struct., 744–747, 937–945 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Kovacs and A. Yu. Ivanov, J. Phys. Chem. B, 113, 2151–2159 (2009).CrossRefGoogle Scholar
  11. 11.
    Z. Su, E. J. Cocinero, E. C. Stanca-Kaposta, B. G. Davis, and J. P. Simons, Chem. Phys. Lett., 471, 17–21 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Krasnokutski, A. Yu. Ivanov, V. Izvekov, G. G. Sheina, and Yu. P. Blagoi, J. Mol. Struct., 482–483, 249– 252 (1998).Google Scholar
  13. 13.
    C. A. Krasnokutskii, A. Yu. Ivanov, G. G. Sheina, and Yu. P. Blagoi, Vestn. Khar’k. Univ., No. 488: Biofiz. Vestn. (Ukraina), 6, No. 1, 49–55 (2000).Google Scholar
  14. 14.
    T. Yu. Nikolaenko, L. A. Bulavin, and D. M. Govorun, Biopolymers and Cell, 27, No. 1, 74–81 (2011).Google Scholar
  15. 15.
    T. Yu. Nikolaenko, L. A. Bulavin, and D. M. Govorun, Ukrain. Bioorg. Acta, 8, No. 2, 8–16 (2010).Google Scholar
  16. 16.
    T. Yu. Nikolaenko, L. A. Bulavin, and D. M. Govorun, Ukrain. Bioorg. Acta, 9, No. 1, 3–11 (2011).Google Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, Connecticut USA (2004).Google Scholar
  18. 18.
    V. Barone, J. Chem. Phys., 122, 014108-1–014108-10 (2005).ADSGoogle Scholar
  19. 19.
    V. Barone, J. Chem. Phys., 120, 3059–3065 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • T. Yu. Nikolaenko
    • 1
  • L. A. Bulavin
    • 1
  • D. N. Govoruna
    • 1
    • 2
  1. 1.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Taras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations