Calibration of the spectral sensitivity of instruments for the near infrared region

  • P. S. Parfenov
  • A. P. Litvin
  • A. V. Baranov
  • A. V. Veniaminov
  • E. V. Ushakova

We present an analysis of methods for calibration of the spectral sensitivity of instruments in the near IR region of the spectrum (0.90–2.05 μm), using as an example recording of the luminescence spectra of PbS semiconductor quantum dots using a diffraction monochromator and an InGaAs photodiode as the detector. We show that when high-sensitivity detectors are employed for calibration using the emission spectrum of an ideal black body, the problem of attenuation of the radiation flux is still important. Instead of neutral density glass and mesh light filters for attenuation of the radiation, we propose using UFS ultraviolet optical glasses (together with PS purple glasses), the maximum optical density of which is within the region of maximum spectral sensitivity of InGaAs photodiodes. We give examples of spectral calibration, taking into account instrumental characteristics and the effect of absorption by water vapor in the air, and also corrections of the luminescence spectra of quantum dots.


near infrared range quantum dots luminescence spectroscopy calibration 


  1. 1.
    V. L. Wehrenberg, C. J. Wang, and P. Guyot-Sionnest, J. Phys. Chem., 106, 10,634–10,640 (2002).Google Scholar
  2. 2.
    A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, Small, 3, No. 4, 536–557 (2007).CrossRefGoogle Scholar
  3. 3.
    A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tscharntke, Opt. Spektrosk., 102, No. 2, 301–305 (2010).Google Scholar
  4. 4.
    E. V. Ushakova, M. V. Artemyev, M. V. Muhina, P. S. Parfenov, S. A. Cherevkov, A. V. Baranov, and A. V. Fedorov, in: Abstracts, Fourteenth International Conference "Laser Optics-2010", St. Petersburg, 28 June–02 July 2010 [in Russian], GUAP, St. Petersburg (2010), p. 79.Google Scholar
  5. 5.
    J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy, CRC Press, Boca Raton (Florida USA) (2008), p. 108.Google Scholar
  6. 6.
    M. L. McKelvy, T. R. Britt, B. L. Davis, J. K. Gillie, F. B. Graves, and L. A. Lentz, Anal. Chem., 70, 119–177 (1998).CrossRefGoogle Scholar
  7. 7.
    V. P. Krishchenko, Near Infrared Spectroscopy [in Russian], KRON-PRESS, Moscow (1997), p. 12.Google Scholar
  8. 8.
    L. Werner, R. Friedrich, U. Johannsen, and A. Steiger, Metrologia, 37, 523–526 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    P.-S. Shaw, T. C. Larason, R. Gupta, S. W. Brown, and K. R. Lykke, J. Res. Natl. Inst. Stand. Technol., 105, 689–700 (2000).CrossRefGoogle Scholar
  10. 10.
    Min Chang, Dan Peng, and Ke-Xin Xu, Optoelectr. Lett., 3, No. 3, 211–214 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    P. S. Parfenov, A. V. Baranov, A. V. Veniaminov, and A. O. Orlova, Opt. Zh., 78, No. 2, 48–52 (2011).Google Scholar
  12. 12.
    Hamamatsu Photonics K.K., "InGaAs Photodiode",
  13. 13.
    T. I. Veinberg, in: V. V. Vargin, ed., Catalog of Colored Glass [in Russian], Mashinostroenie, Moscow (1967), pp. 24, 40.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • P. S. Parfenov
    • 1
  • A. P. Litvin
    • 1
  • A. V. Baranov
    • 1
  • A. V. Veniaminov
    • 1
  • E. V. Ushakova
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations