Journal of Applied Spectroscopy

, Volume 77, Issue 4, pp 468–478

Analysis of vibrational, structural, and electronic properties of rivastigmine by density functional theory

  • O. Prasad
  • L. Sinha
  • N. Misra
  • V. Narayan
  • N. Kumar
  • A. Kumar
Article

The present work deals with the structural, electronic, and vibrational analysis of rivastigmine. Rivastigmine, an antidementia medicament, is credited with significant therapeutic effects on the cognitive, functional, and behavioural problems that are commonly associated with Alzheimer’s dementia. For rivastigmine, a number of minimum energy conformations are possible. The geometry of twelve possible conformers has been analyzed and the most stable conformer was further optimized at a higher basis set. The electronic properties and vibrational frequencies were then calculated using a density functional theory at the B3LYP level with the 6-311+G(d, p) basis set. The different molecular surfaces have also been drawn to understand the activity of the molecule. A narrower frontier orbital energy gap in rivastigmine makes it softer and more reactive than water and dimethylfuran. The calculated value of the dipole moment is 2.58 debye.

Keywords

normal modes frontier orbital energy molecular electrostatic potential surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Brookmeyer, S. Gray, C. Kawas, Am. J. Public Health, 88, No 9, 1337–1342 (1998).CrossRefGoogle Scholar
  2. 2.
    Arch. Gerontol. Geriatr., 33, No 3, 237–241 (2001).Google Scholar
  3. 3.
    E. G. Jordá, E. Verdaguer, A. Jiménez, A. M. Canudas, V. Rimbau, P. Camps, D. Muñoz-Torrero, A. Camins, M. Pallás, J. Alzheimer’s Dis., 6, No 6, 577Ö83 (2004).Google Scholar
  4. 4.
    M. W. Jann, K. L. Shirley, G. W. Small, Clin. Pharmacokinet., 41, No 10, 719–739 (2002).CrossRefGoogle Scholar
  5. 5.
    P. Camps, D. Muñoz-Torrero, Mini Rev. Med. Chem., 2, No 1, 11–25 (2002).CrossRefGoogle Scholar
  6. 6.
    M. W. Jann, Pharmacotherapy, 20, No 1, 1–12 (2000).CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Emre, D. Aarsland, A. Albanese, N. Engl. J. Med., 351, 2509–2518 (2004).CrossRefGoogle Scholar
  8. 8.
    M. W. Jann, K. L. Shirley, G.W. Small, Clin. Pharmacokinet., 41, No 10, 719–739 (2002).CrossRefGoogle Scholar
  9. 9.
    J. Corey-Bloom, R. Anand, J. Veach, Int. J. Geriatr Psychopharmacol., 1, 55–65 (1998).Google Scholar
  10. 10.
    M. Rösler, R. Anand, A. Cicin-Sain, Br. Med. J., 318, 633–640 (1999).Google Scholar
  11. 11.
    S. I. Finkel, Clin. Ther., 26, 980–990 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Rösler, W. Retz, P. Retz-Junginger, H. J. Dennler, Behav. Neurol., 11, No 4, 211–216 (1998).Google Scholar
  13. 13.
    A. A. N. de. Paula, J. B. L. Martins, R. Gargano, M. L. dos Santos, L. A. S. Romeiro, Chem. Phys. Lett., 446, 304–308 (2007).CrossRefADSGoogle Scholar
  14. 14.
    A. A. N. de Paula, J. B. L. Martins, M. L. dos Santos, L. de C. Nascente, R. Gargano, L. A. S. Romeiro, T. F. M. A. Areas, K. S. T. Vieira, N. F. Gamboa, N. G. Castro, R. Gargano, Eur. J. Med. Chem., 44, 3754–3759 (2009).CrossRefGoogle Scholar
  15. 15.
    W. Kohn, L. J. Sham, Phys. Rev., 140, A1133–A1138 (1965).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).CrossRefADSGoogle Scholar
  17. 17.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev., B 37, 785 (1988).ADSGoogle Scholar
  18. 18.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett., 157, 200–206 (1989).CrossRefADSGoogle Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, Gaussian 03, Revision C01 (2003).Google Scholar
  20. 20.
    A. P. Scott, L. Random, J. Phys. Chem. US, 100, 16502–16513 (1996).CrossRefGoogle Scholar
  21. 21.
    R. Denington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, R. Gilliland, GaussView, Version 3.07, Semichem Inc., Shawnee Mission, KS (2003).Google Scholar
  22. 22.
    M. H. Jamróz, Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw (2004).Google Scholar
  23. 23.
    Introduction to Physical Chemistry, Ed. Marcus Frederick Charles Ladd, 3 rd ed., Cambridge University Press, Chapter 6, 251 (1998).Google Scholar
  24. 24.
    G. R. Desiraju, T. Steiner. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, New York, 13 (1999).Google Scholar
  25. 25.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York (1976).Google Scholar
  26. 26.
    P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha, J. Am. Chem. Soc., 105, 7037–7047 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • O. Prasad
    • 1
  • L. Sinha
    • 1
  • N. Misra
    • 1
  • V. Narayan
    • 1
  • N. Kumar
    • 1
  • A. Kumar
    • 1
  1. 1.Physics DepartmentUniversity of LucknowLucknowIndia

Personalised recommendations