Advertisement

Journal of Applied Spectroscopy

, Volume 76, Issue 6, pp 864–875 | Cite as

Analysis of metal ion concentration in humic acid by excitation-emission matrix fluorescence and chemometric methods

  • O. Divya
  • V. Venkataraman
  • A. K. Mishra
Article

In this study, using a representative system of a humic acid sample (Aldrich), a method for the quantification of the interaction of metal ions (Cu(II), Pb(II), Cd(II), Zn(II)) with HA has been developed by combining EEMF and chemometrics. N-way partial least squares regression (N-PLS) and parallel factor analysis (PARAFAC) have been effectively applied to the fluorescence data of HA samples having varying metal ion concentrations. The accuracy of the method, as evaluated from the root mean square error of prediction (RMSEP) value, is found to be very good in the case of Cu and Pb.

Keywords

humic acid excitation-emission matrix fluorescence spectroscopy parallel factor analysis N-way partial least squares regression chemometric analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Stevenson, “Humus chemistry: Genesis, composition, reactions”, New York, John Wiley & Sons Inc, 1982.Google Scholar
  2. 2.
    N. Shinozuka, C. Lee, Mar. Chem., 33, 229–241 (1991).CrossRefGoogle Scholar
  3. 3.
    E. Tipping, “Cation binding by humic substances, New York, Cambridge University Press, 2002.CrossRefGoogle Scholar
  4. 4.
    E. Tipping, Environ. Sci. Technol., 27, 520–529 (1993).CrossRefGoogle Scholar
  5. 5.
    E. Tipping, J. Rieuwerts, G. Pan, M. R. Ashmore, S. Lofts, M. T. R. Hill, M. E. Farago, I. Thornton, Environ. Pollut., 125, 213–225 (2003).CrossRefGoogle Scholar
  6. 6.
    H. Kupsch, K. Franke, D. Degering, W. Troger, T. Butz, Radiochim. Acta, 73, 145–147 (1996).Google Scholar
  7. 7.
    S. Pompe, M. Bubner, M. A. Denecke, T. Reich, A. Brachmann, G. Geipel, R. Nicolai, K. H. Heise, H. Nitsche, Radiochim. Acta, 74, 135–140 (1996).Google Scholar
  8. 8.
    A. Dierckx, A. Maes, J. Vancluysen, Radiochim. Acta, 66/67, 149–156(1994).Google Scholar
  9. 9.
    B. J. Feldman, J. D. Osterloh, B. H. Hata, A. D’Alessandro, Anal. Chem., 66, 1983–1987 (1994).CrossRefGoogle Scholar
  10. 10.
    K. M. Elkins, D. J. Nelson, Coordin. Chem. Rev., 228, 205–225 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Meissl, E. Smidt, M. Schwanninger, Talanta, 72, 791–799 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Jezierski, F. Czechowski, M. Jerzykiewicz, I. Golonka, J. Drozd, E. Bylinska, Y. Chen, M. R. D. Seaward, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 58, 1293–1300 (2002).CrossRefGoogle Scholar
  13. 13.
    C. Ruckebusch, L. Duponchel, J. P. Huvenne, A. Caudron, L. Boilet, J. P. Cornard, J. C. Merlin de Juan, Anal. Chim. Acta, 544, 337–344 (2005).CrossRefGoogle Scholar
  14. 14.
    M. C. G. Antunes, C. C. C. Pereira, J. C. G. Esteves da Silva, Anal. Chim. Acta, 595, 9–18 (2007).CrossRefGoogle Scholar
  15. 15.
    H. Chen, J. E. Kenny, Ann. Environ. Sci., 1, 1–9 (2007).zbMATHGoogle Scholar
  16. 16.
    K. Nakashima, M. Maki, F. Ishikawa, T. Yoshikawa, Y.-K. Gong, T. Miyajima, Spectrochim. Acta, B, 67, 930–935 (2007).CrossRefGoogle Scholar
  17. 17.
    M. R. Provenzano, V. D’Orazio, M. Jerzykiewicz, N. Senesi, Chemosphere, 55, 885–892 (2004).CrossRefGoogle Scholar
  18. 18.
    D. M. Reynolds, S. R. Ahmad, Water Res., 29, 2214–2216 (1995).CrossRefGoogle Scholar
  19. 19.
    J. H. Rho, J. L. Stuart, Anal. Chem., 50, 620–625 (1978).CrossRefGoogle Scholar
  20. 20.
    D. Patra, A. K. Mishra, Appl. Spectrosc., 55, 338–342 (2001).CrossRefADSGoogle Scholar
  21. 21.
    D. Patra, A. K. Mishra, Anal. Chim. Acta, 454, 209–215 (2002).CrossRefGoogle Scholar
  22. 22.
    D. Patra, L. Sireesha, A. K. Mishra, Indian J. Chem. A, 40A, 374–379 (2001).Google Scholar
  23. 23.
    J. Ghasemi, A. Niazi, Anal. Chim. Acta, 533, 169–177 (2005).CrossRefGoogle Scholar
  24. 24.
    R. A. Harshman, UCLA Working papers Phonet., 16, 1 (1970).Google Scholar
  25. 25.
    R. Bro, Chemom. Intell. Lab. Syst., 38, 149–171 (1997).CrossRefGoogle Scholar
  26. 26.
    L. Stahle, Chemom. Intell. Lab. Syst., 7, 95 (1989).CrossRefGoogle Scholar
  27. 27.
    R. Bro, J. Chemometr., 10, 47–65 (1996).CrossRefGoogle Scholar
  28. 28.
    C. M. Anderson, R. Bro, J. Chemometr., 17, 200–215 (2003).CrossRefGoogle Scholar
  29. 29.
    R. Bro, Chemom. Intell. Lab. Syst., 46, 133–147 (1999).CrossRefGoogle Scholar
  30. 30.
    R. Bro, H.A.L. Kiers, J. Chemometr., 17, 274–286 (2003).CrossRefGoogle Scholar
  31. 31.
    R. Kramer, “Chemometric Techniques for Quantitative Analysis, Marcel Dekker, New York, 1998.Google Scholar
  32. 32.
    D. Patra, A. K. Mishra, Analyst, 125, 1383–1386 (2000).CrossRefADSGoogle Scholar
  33. 33.
    B. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, PLS_Toolbox 3.5, 2005, Eigenvector research.Google Scholar
  34. 34.
    C. Plaza, G. Brunetti, N. Senesi, A. Polo, Anal. Bioanal. Chem., 386, 2133–2140 (2006).CrossRefGoogle Scholar
  35. 35.
    H. Kerndorff, M. Schnitzer, Geochim. Cosmochim. Acta, 44, 1701–1708 (1980).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennai-36India
  2. 2.CEERI Centre, CSIR Complex TaramaniChennaiIndia

Personalised recommendations