Local field enhancement near spherical nanoparticles in absorbing media

Article

It is shown by numerical simulation that the enhancement of the field near metallic nanoparticles is most significant in the transparency region of the matrix material and falls off as the absorption coefficient rises. In an absorbing matrix medium this leads both to an increase in the fraction of energy absorbed by the matrix material and to a substantial transformation in its spectral distribution. This is illustrated for the case of copper phthalocyanine with silver nanoparticles. By choosing the size of the introduced plasmon nanoparticles it is possible to enhance the absorption in the visible for the materials used in solar cells and thereby increase their energy efficiency.

Keywords

local field intensity enhanced absorption silver nanoparticles copper phthalocyanine 

References

  1. 1.
    U. Kreibig and M. Volmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin (1995).Google Scholar
  2. 2.
    B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, Phys. Rev. B, 24, 649–657 (1981).CrossRefADSGoogle Scholar
  3. 3.
    M. Quinten, Appl. Phys. B, 73, 245–255 (2001).CrossRefADSGoogle Scholar
  4. 4.
    R. A. Dynich and A. N. Ponyavina, Zh. Prikl. Spektr., 75, 831–837 (2008).Google Scholar
  5. 5.
    P. Matheu, S. H. Lim, D. Derkac, C. McPheeters, and E. T. Yu, Appl. Phys. Lett., 93, 121904 (2008).CrossRefGoogle Scholar
  6. 6.
    K. Nakayama, K. Tanabe, and H. A. Atwate, Appl. Phys. Lett., 93, 113108 (2008).CrossRefGoogle Scholar
  7. 7.
    C. S. Solanki and G. Beaucarne, Energy Sustain. Develop., 11, No. 3, 17–23 (2007).CrossRefGoogle Scholar
  8. 8.
    W. C. Mundy, J. A. Roux, and A. M. Smith, J. Opt. Soc. Am., 64, 1593–1597 (1974).CrossRefADSGoogle Scholar
  9. 9.
    P. Chylek, J. Opt. Soc. Am., 67, 561–563 (1977).CrossRefADSGoogle Scholar
  10. 10.
    C. F. Bohren and D. P. Gilra, J. Colloid Interface Sci., 72, 215–221 (1979).CrossRefGoogle Scholar
  11. 11.
    M. I. Mishchenko, Opt. Express, 15, 13188–13202 (2007).CrossRefADSGoogle Scholar
  12. 12.
    M. Quintem and J. Rostalki, Part. Part. Syst. Charact., 13, 89–96 (1996).CrossRefGoogle Scholar
  13. 13.
    A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, Eur. Phys. J. D, 6, 365–373 (1999).CrossRefADSGoogle Scholar
  14. 14.
    Q. Fu and W. Sun, Appl. Opt., 40, 1354–1361 (2001).CrossRefADSGoogle Scholar
  15. 15.
    I. W. Sudiarta and P. Chylek, J. Opt. Soc. Am. A, 18, 1275–1278 (2001).CrossRefADSGoogle Scholar
  16. 16.
    P. B. Johnson and R. W. Christy, Phys. Rev. B, 12, 4370–4387 (1972).CrossRefADSGoogle Scholar
  17. 17.
    L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys., 86, 487–496 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • R. A. Dynich
    • 1
  • A. N. Ponyavina
    • 1
  • V. V. Filippov
    • 1
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations