Journal of Applied Spectroscopy

, Volume 76, Issue 4, pp 570–576 | Cite as

Method for creating hollow light beams with local intensity minima and possibilities for their application

  • A. A. Ryzhevich
  • S. V. Solonevich
  • A. G. Smirnov
Article

We propose and experimentally realize methods for forming light beams with local spatial intensity minima of different types (hollow light beams), based on application of specially shaped linear optics phase elements. The fields with local intensity minima, obtained as a result of phase conversion, are comparable with respect to transverse dimensions, power, and intensity gradient to the initial gaussian beam focused by means of a spherical lens. The optical layouts were assembled using photostable optical elements and therefore make it possible to create high-power laser fields suitable not only for manipulation of microparticles but also for laser machining of materials, in particular laser welding of metals. Using a phase element with planar symmetry, we can select the optimal laser beam profile that will ensure no burning on the line of contact between the ends of the parts to be welded for high penetration and will make it possible to achieve the maximum possible strength of the weld joint for a specified laser radiation power.

Key words

hollow light field laser welding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Manek, Yu. B. Ovchinnikov, and R. Grimm, Opt. Commun., 147, 67–70 (1998).CrossRefADSGoogle Scholar
  2. 2.
    H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, Phys. Rev. A, 49, No. 6, 4922–4927.Google Scholar
  3. 3.
    N. Hodson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications, Springer-Verlag, London (1997).Google Scholar
  4. 4.
    N. S. Kazak, N. A. Khilo, and A. A. Ryzhevich, Kvantovaya Élektron., 29, No. 2, 184–188 (1999).Google Scholar
  5. 5.
    A. A. Ryzhevich, Opt. Zh., 68, No. 3, 54–55 (2001).Google Scholar
  6. 6.
    N. S. Kazak, E. G. Katranzhi, and A. A. Ryzhevich, Zh. Prikl. Spektrosk., 69, No. 2, 242–247 (2002).Google Scholar
  7. 7.
    N. A. Khilo, A. A. Ryzhevich, and E. S. Petrova, Kvantovaya Élektron., 31, No. 1, 85–59 (2001).CrossRefGoogle Scholar
  8. 8.
    M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, Opt. Commun., 112, 321–327 (1994).CrossRefADSGoogle Scholar
  9. 9.
    B. Spektor, A. Normatov, and J. Shamir, Proc. SPIE, 6616, 661622.1–661622.9 (2007).Google Scholar
  10. 10.
    V. A. Myshkovets, "Formation of laser beams and study of the processes involved in contour machining of materials," Author’s Abstract, Dissertation in competition for the academic degree of Candidate of Physical-Mathematical Sciences, Minsk (1994).Google Scholar
  11. 11.
    A. P. Dmitrochenkov, S. A. Naumovich, N. S. Kazak, V. K. Pavlenko, A. A. Ryzhevich, and E. G. Katranzhi, Sovrem. Stomatologiya, No. 3, 36–39 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. A. Ryzhevich
    • 1
  • S. V. Solonevich
    • 1
  • A. G. Smirnov
    • 1
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations