Journal of Applied Spectroscopy

, Volume 74, Issue 1, pp 51–59 | Cite as

Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands

  • V. I. Tsaryuk
  • K. P. Zhuravlev
  • V. F. Zolin
  • V. A. Kudryashova
  • J. Legendziewicz
  • R. Szostak
Article

Abstract

We discuss the possibility of optimizing the brightness of luminescence for phenylcarboxylates, naphthylcarboxylates, and indolylcarboxylates of europium and terbium and their adducts with 1,10-phenanthroline and 2,2′-bipyridine by modifying the ligands. We have studied the efficiency of luminescence and luminescence excitation. We consider the effect of blocking energy transfer from the ligands to the Eu3+ and Tb3+ ions by methylene (-CH2-) bridges dividing the π-electron system of the ligands into two parts and by the electronacceptor nitro group (-NO2). We have analyzed the pathways for transfer and degradation of the excitation energy at 77 K and 300 K. From the phosphorescence spectra of gadolinium salts, we have determined the energies of the lowest excited triplet states of the ligands. We consider the effect of the relative positions of the triplet levels of the ligands and the excited levels of the Eu3+ and Tb3+ ions on the luminescence efficiency. We found channels for dissipation of the excitation energy via the ππ* and nπ* states of the aromatic system of the carboxylate and the NO2 group.

Key words

Eu3+ ion Tb3+ ion luminescence and luminescence excitation spectra luminescence efficiency aromatic carboxylates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ma, D. Wang, B. Li, Z. Hong et al., Synthetic Metals, 102, 1136–1137 (1999).CrossRefGoogle Scholar
  2. 2.
    Y. Zheng, C. Shi, Y. Liang, Q. Lin, C. Guo, and H. Zhang, Synthetic Metals, 114, 321–323 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Eliseeva, O. Kotova, O Mirzov, K. Anikin, L. Lepnev, E. Perevedentseva, A. Vitukhnovsky, and N. Kuzmina, Synthetic Metals, 141, 225–230 (2004) (and references therein).CrossRefGoogle Scholar
  4. 4.
    K. P. Zhuravlev and Yu. O. Yakovlev, Fiz. Tverd. Tela, 47, 1518–1521 (2005). [Physics of the Solid State, 47, 1579–1582 (2005).]Google Scholar
  5. 5.
    V. F. Zolin, L. N. Puntus, V. I. Tsaryuk, V. A. Kudryashova, J. Legendziewicz, P. Gawryszewska, and R. Szostak, J. Alloys Comp., 380, 279–284 (2004).CrossRefGoogle Scholar
  6. 6.
    V. Tsaryuk, J. Legendziewicz, L. Puntus, V. Zolin, and J. Sokolnicki, J. Alloys Comp., 300–301, 464–470 (2000).CrossRefGoogle Scholar
  7. 7.
    V. Tsaryuk, V. Zolin, J. Legendziewicz, J. Sokolnicki, and V. Kudryashova, in: Proceedings, Eleventh International Workshop on Inorganic and Organic Electroluminescence & 2002 International Conference on the Science and Technology of Emissive Displays and Lighting, Ghent University, Belgium (2002), pp. 165–168.Google Scholar
  8. 8.
    C. Pettinari, F. Marchetti, A. Cingolani, A. Drozdov, I. Timokhin, S. Troyanov, V. Tsaryuk, and V. Zolin, Inorg. Chim. Acta, 357, 4181–4190 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Tsaryuk, K. Zhuravlev, V. Zolin, P. Gawryszewska, J. Legendziewicz, V. Kudryashova, and I. Pekareva, J. Photochem. Photobiol. A: Chemistry, 177, 314–323 (2006).CrossRefGoogle Scholar
  10. 10.
    J.-F. Ma, Z.-S. Jin, and J.-Z. Ni, Acta Cryst., C50, 1008–1010 (1994).Google Scholar
  11. 11.
    G. Novitchi, S. Shova, J.-P. Costes, O. Mamula, and M. Gdaniec, Inorg. Chim. Acta, 358, 4437–4442 (2005).CrossRefGoogle Scholar
  12. 12.
    M. A. Porai-Koshits, A. S. Antsyshkina, G. G. Sadikov, E. N. Lebedeva, S. S. Korovin, R. N. Shchelokov, and V. G. Lebedev, Zh. Neorg. Khim., 40, 748–756 (1995).Google Scholar
  13. 13.
    V. Tsaryuk, I. Turowska-Tyrk, J. Legendziewicz, V. Zolin, R. Shostak, and L. Puntus, J. Alloys Comp., 341, 323–332 (2002).CrossRefGoogle Scholar
  14. 14.
    X. Li, L. Jin, S. Lu, J. Zhang, J. Mol. Struct., 604, 65–71 (2002).CrossRefGoogle Scholar
  15. 15.
    S.-P. Yang, H. Yang, X.-B. Yu, and Z.-M. Wang, J. Mol. Struct., 659, 97–102 (2003).CrossRefGoogle Scholar
  16. 16.
    A. P. Suisalu, V. N. Zakharov, A. L. Kamyshnyi, and L. A. Aslanov, Zh. Eksp. Teor. Fiz., 98, 1330–1335 (1990).Google Scholar
  17. 17.
    R. N. Nurmukhametov, Absorption and Luminescence of Aromatic Compounds [in Russian], Khimiya, Moscow (1971).Google Scholar
  18. 18.
    L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules [in Russian], Nauka, Moscow (1970), p. 328.Google Scholar
  19. 19.
    M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 75, 149–169 (1997).CrossRefGoogle Scholar
  20. 20.
    O. A. Reutov, Theoretical Principles of Organic Chemistry [in Russian], Mosk. Gos. Univ., Moscow (1964).Google Scholar
  21. 21.
    O. V. Sverdlova, Electronic Spectra in Organic Chemistry [in Russian], Khimiya, Leningrad (1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. I. Tsaryuk
    • 1
  • K. P. Zhuravlev
    • 1
  • V. F. Zolin
    • 1
  • V. A. Kudryashova
    • 1
  • J. Legendziewicz
    • 2
  • R. Szostak
    • 2
  1. 1.Institute of Radioengineering and ElectronicsRussian Academy of SciencesFryazino, Moscow Oblast
  2. 2.Chemistry DepartmentWroclaw UniversityPoland

Personalised recommendations