Advertisement

Journal of Applied Spectroscopy

, Volume 73, Issue 5, pp 650–656 | Cite as

Anisotropy of ensembles of free polyatomic photoisomers

  • A. P. BlokhinEmail author
  • M. F. Gelin
Article
  • 16 Downloads

Abstract

In order to describe the polarization response of an ensemble of molecules undergoing structural transformations (photoisomerization) under collisionless conditions, we have calculated the orientational correlation functions. We assume that changes in molecular structure can be considered as instantaneous on the molecular rotation scale. We have obtained general expressions for the anisotropy when the original molecule and the photoisomer are asymmetric tops. We have performed anisotropy calculations for steady-state experimental conditions and a number of limiting situations, when the characteristic times of the photoreaction are much shorter or much longer than the molecular reorientation times and when the original molecule and the photoisomer are planar tops. We have shown that detecting the polarization response allows us to estimate the characteristic times of the photoreaction and to determine the intramolecular orientation of the transition dipole moments for transitions with absorption and emission of light.

Key words

polyatomic molecules photoisomerization anisotropy orientational correlation functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Zewail, J. Phys. Chem., 100, 12701–12724 (1996).Google Scholar
  2. 2.
    C. D. Berweger, W. F. van Gunsteren, and F. Muller-Plathe, J. Chem. Phys., 111, No. 19, 8987–8999 (1999).CrossRefADSGoogle Scholar
  3. 3.
    A. Meyer, J. Schroeder, and J. Troe, J. Phys. Chem. A, 103, 10528–10539 (1999).Google Scholar
  4. 4.
    V. D. Vachev, J. H. Frederick, B. A. Grishanin, V. N. Zadkov, and N. I. Koroteev, J. Phys. Chem., 99, 52247–52263 (1995).Google Scholar
  5. 5.
    J. S. Baskin, L. Banares, S. Pedersen, and A. H. Zewail, J. Phys. Chem., 100, 11920–11933 (1996).Google Scholar
  6. 6.
    S. Abrash, S. Repinec, and R. M. Hochstrasser, J. Chem. Phys., 93, 1041–1053 (1990).CrossRefADSGoogle Scholar
  7. 7.
    R. G. Gordon, Adv. Magn. Res., 3, 1–42S (1968).Google Scholar
  8. 8.
    G. V. Dubrovskii, A. V. Bogdanov, Yu. E. Gorbachev, and I. F. Golovlev, Quasiclassical Theory of Collisions in Gases [in Russian], Nauka, Moscow (1989).Google Scholar
  9. 9.
    J. Jang and K. J. Shin, J. Chem. Phys., 106, 6813–6819 (1997).CrossRefADSGoogle Scholar
  10. 10.
    T. E. Bull, Chem. Phys., 121, 1–19 (1988).CrossRefGoogle Scholar
  11. 11.
    R. J. Sension, S. T. Repinec, A. Z. Szarka, and R. M. Hochstrasser, J. Chem. Phys., 98, 6291–6314 (1993).CrossRefADSGoogle Scholar
  12. 12.
    A. Szabo, J. Chem. Phys., 81, 150–166 (1984).CrossRefADSGoogle Scholar
  13. 13.
    A. P. Blokhin and M. F. Gelin, J. Lumin., 72-74, 840–841 (1997).CrossRefGoogle Scholar
  14. 14.
    A. P. Blokhin and M. F. Gelin, J. Mol. Struct., 408/409, 569–572 (1997).CrossRefGoogle Scholar
  15. 15.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, S. A. Polubisok, and V. A. Tolkachev, J. Chem. Phys., 110, 978–993 (1999).CrossRefADSGoogle Scholar
  16. 16.
    A. P. Blokhin and M. F. Gelin, Opt. i Spektr., 86, No. 2, 222–227 (1999).Google Scholar
  17. 17.
    A. G. Pierre and W. A. Steele, Phys. Rev., 184, 172–186 (1969).CrossRefADSGoogle Scholar
  18. 18.
    A. P. Blokhin, Vestsi AN BSSR, Ser. Fiz.-Mat. Navuk, No. 2, 70–79 (1986).Google Scholar
  19. 19.
    A. P. Blokhin, Vestsi AN BSSR, Ser. Fiz.-Mat. Navuk, No. 4, 77–86 (1986).Google Scholar
  20. 20.
    A. A. Heikal, J. S. Baskin, L. Banares, and A. H. Zewail, J. Phys. Chem., A101, 57–590 (1997).Google Scholar
  21. 21.
    R. W. Schoenlein, L. A. Peteanu, R. A. Maties, and C. V. Shank, Science, 254, 14 (1991).CrossRefGoogle Scholar
  22. 22.
    P. Farmanara, V. Stert, and W. Radloff, Chem. Phys. Lett., 288, 518 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations