Skip to main content

Advertisement

Log in

Evaluating the potential of carbohydrate-rich microalga Rhodosorus sp. SCSIO-45730 as a feedstock for biofuel and β-glucans using strategies of phosphate optimization and low-cost harvest

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

With the increase of global energy consumption, bioenergy from microalgae has been recognized as a potential alternative choice. A novel carbohydrate-rich microalgal strain, isolated from Xisha Islands (China), was identified as Rhodosorus sp. SCSIO-45730. To accumulate biomass for bioenergy production, strategies of phosphate optimization and chitosan flocculation were used to evaluate its potential for the production of biomass, total carbohydrates, and β-glucans. The biomass of this alga reached 12.3 ± 0.1 g L−1 in vertical bubble column photobioreactors at the phosphate concentration of 120 mg L−1, and the productivities of total carbohydrates and β-glucans maximized up to 242.6 ± 2.3 mg L−1 day−1 and 108.1 ± 4.0 mg L−1 day−1, respectively. Simultaneously, flocculation results demonstrated that the recovery rate of the biomass, total carbohydrates, and β-glucans were over 90% at a low chitosan concentration of 3 mg L−1. The flocs were easily collected and washed through a 300-mesh bolting cloth, presenting an ultralow harvest cost of 2.93 US$ per tonne of biomass. In summary, addition of suitable phosphate and flocculation with low chitosan concentration could be effective strategies to enhance the commercial potential of Rhodosorus sp. SCSIO–45730 as a feedstock for biofuel and β-glucans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adenan NS, Yusoff FM, Medipally SR, Shariff M (2016) Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. J Environ Biol 37:669–676

    CAS  PubMed  Google Scholar 

  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Optimization of microalgae coagulation process using chitosan. Chem Eng J 173:879–882

    Article  CAS  Google Scholar 

  • Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Básaca-Loya A, Burboa MG, Valdez MA, Gámez R, Goycoolea FM, Gutiérrez-Millán LE (2008) Aggregation behavior and rheology of culture broths of Rhodosorus marinus. Rev Mex Fish Sci 54:119–126

    Google Scholar 

  • Blockx J, Verfaillie A, Thielemans W, Muylaert K (2018) Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sustain Chem Eng 6:11273–11279

    Article  CAS  Google Scholar 

  • Bobadilla F, Rodriguez-Tirado C, Imarai M, Galotto MJ, Andersson R (2013) Soluble beta-1,3/1,6-glucan in seaweed from the southern hemisphere and its immunomodulatory effect. Carbohydr Polym 92:241–248

    Article  CAS  PubMed  Google Scholar 

  • Borchardt JA, Azad HS (1968) Biological extraction of nutrients. Water Pollution Control Federation 40:1739–1754

    CAS  Google Scholar 

  • Brady PV, Pohl PI, Hewson JC (2014) A coordination chemistry model of algal autoflocculation. Algal Res 5:226–230

    Article  Google Scholar 

  • Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  • Chng LM, Lee KT, Chan DJC (2017) Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energ Convers Manag 141:410–419

    Article  CAS  Google Scholar 

  • Corrêa DO, Duarte MER, Noseda MD (2018) Biomass production and harvesting of Desmodesmus subspicatus cultivated in flat plate photobioreactor using chitosan as flocculant agent. J Appl Phycol 31:857–866

    Article  CAS  Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • Du B, Bian Z, Xu B (2014) Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms: a review. Phytother Res 28:159–166

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Farid MS, Shariati A, Badakhshan A, Anvaripour B (2013) Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol 131:555–559

    Article  CAS  PubMed  Google Scholar 

  • Formighieri C (2015) Bioethanol from algae polysaccharides. In: Solar-to-fuel conversion in algae and cyanobacteria. Springer, Cham, pp 13–17

    Google Scholar 

  • Garzon-Sanabria AJ, Ramirez-Caballero SS, Moss FE, Nikolov ZL (2013) Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency. Bioresour Technol 143:231–237

    Article  CAS  PubMed  Google Scholar 

  • Gerchman Y, Vasker B, Tavasi M, Mishael Y, Kinel-Tahan Y, Yehoshua Y (2017) Effective harvesting of microalgae: comparison of different polymeric flocculants. Bioresour Technol 228:141–146

    Article  CAS  PubMed  Google Scholar 

  • Grima EM, Belarbi EH, Acién Fernández FG, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Gupta SK, Kumar NM, Guldhe A, Ansari FA, Rawat I, Nasr M, Bux F (2018) Wastewater to biofuels: comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecol Eng 117:62–68

    Article  Google Scholar 

  • Hende SVD, Carre E, Cocaud E, Beelen V, Boon N, Vervaeren H (2014) Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresour Technol 161:245–254

    Article  CAS  Google Scholar 

  • Ho SH, Chen WM, Chang JS (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems - a review. Biotechnol Adv 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  PubMed  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346–351

    Article  CAS  PubMed  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Kalla N, Khan S (2016) Effect of variable salinity and phosphorus culture conditions on growth and pigment content of Chlorella vulgaris. Indian J Sci Technol 9:93941

    Google Scholar 

  • Khozin-Goldberg I, Shrestha P, Cohen Z (2005) Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim Biophys Acta 1738:63–71

    Article  CAS  PubMed  Google Scholar 

  • Kim DG, La HJ, Ahn CY, Park YH, Oh HM (2011) Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol 102:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Krayesky-Self S, Phung D, Schmidt W, Sauvage T, Butler L, Fredericq S (2020) First report of endolithic members of Rhodosorus marinus (Stylonematales, Rhodophyta) growing inside rhodoliths offshore Louisiana, Northwestern Gulf of Mexico. Front Mar Sci 7:1–8

    Article  Google Scholar 

  • Lai J, Yu Z, Song X, Cao X, Han X (2011) Responses of the growth and biochemical composition of Prorocentrum donghaiense to different nitrogen and phosphorus concentrations. J Exp Mar Biol Ecol 405:6–17

    Article  CAS  Google Scholar 

  • Li T, Xu J, Wu H, Jiang P, Chen Z, Xiang W (2019) Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Mar Drugs 17:E124

  • Liang K, Zhang Q, Gu M, Cong W (2012) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318

    Article  CAS  Google Scholar 

  • Morales J, Noüe JDL, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquac Eng 4:257–270

    Article  Google Scholar 

  • Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187

    Article  CAS  PubMed  Google Scholar 

  • Rojo-Cebreros AH, Ibarra-Castro L, Martínez-Brown JM, Velasco-Blanco G, Martínez-Téllez MA, Medina-Jasso MA, Nieves-Soto M, Quintana-Zavala D (2017) Potential of Nannochloropsis in beta glucan production. In: Jan M, Kazik P (eds) Nannochloropsis: biology. Biotechnological. Nova Sciences Publishers Inc., New York, pp 181–225

    Google Scholar 

  • Roopnarain A, Gray VM, Sym SD (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411

    Article  CAS  PubMed  Google Scholar 

  • Said HA (2009) Changes in levels of cellular constituents of Dunaliella parva associated with inorganic phosphate depletion. Middle East J Sci Res 4:94–99

    CAS  Google Scholar 

  • Santizo-Taan R, Bautista-Teruel M, Maquirang JRH (2020) Enriched Ulva pertusa as partial replacement of the combined fish and soybean meals in juvenile abalone Haliotis asinina (Linnaeus) diet. J Appl Phycol 32:741–749

    Article  CAS  Google Scholar 

  • Schulze C, Wetzel M, Reinhardt J, Schmidt M, Felten L, Mundt S (2016) Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. J Appl Phycol 28:2719–2725

    Article  CAS  Google Scholar 

  • Sero ET, Siziba N, Bunhu T, Shoko R, Jonathan E (2020) Biophotonics for improving algal photobioreactor performance: a review. Int J Energy Res. https://doi.org/10.1002/er.5059

  • Sivakumar G, Vail DR, Xu JF, Burner DM, Lay JO, Ge XM, Weathers PJ (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10:8–18

    Article  CAS  Google Scholar 

  • Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and sea waters. Biomass 15:187–199

    Article  Google Scholar 

  • 't Lam GP, Giraldo JB, Vermue MH, Olivieri G, Eppink MH, Wijffels RH (2016) Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans. J Biotechnol 225:10–17

    Article  CAS  PubMed  Google Scholar 

  • Toor M, Kumar SS, Malyan SK, Bishnoi NR, Mathimani T, Rajendran K, Pugazhendhi A (2019) An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 242:125080

    Article  PubMed  CAS  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Article  CAS  PubMed  Google Scholar 

  • Vandamme D, Muylaert K, Fraeye I, Foubert I (2014) Floc characteristics of Chlorella vulgaris: influence of flocculation mode and presence of organic matter. Bioresour Technol 151:383–387

    Article  CAS  Google Scholar 

  • Wilson S, West J, Pickett-Heaps J, Yokoyama A, Hara Y (2002) Chloroplast rotation and morphological plasticity of the unicellular alga Rhodosorus (Rhodophyta, Stylonematales). Phycol Res 50:183–191

    Article  Google Scholar 

  • Wu YH, Yu Y, Hu HY (2014) Effects of initial phosphorus concentration and light intensity on biomass yield per phosphorus and lipid accumulation of Scenedesmus sp. LX1. BioEnerg Res 7:927–934

    Article  CAS  Google Scholar 

  • Yamin WA, Shaleh SRM, Ching FF, Othman R, Manjaji-Matsumoto M, Mustafa S, Shigeharu S, Kandasamy G (2019) Harvesting Chaetoceros gracilis by flocculation using chitosan. IOP Conference Series: Earth and Environmental Science 236:012123

    Article  Google Scholar 

  • Zhou X, Lin W, Tong L, Liu X, Zhong K, Liu L, Wang L, Zhou S (2016) Hypolipidaemic effects of oat flakes and beta-glucans derived from four Chinese naked oat (Avena nuda) cultivars in Wistar-Lewis rats. J Sci Food Agric 96:644–649

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Wu S (2019) Water-soluble beta-1,3-glucan prepared by degradation of curdlan with hydrogen peroxide. Food Chem 283:302–304

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors appreciatively acknowledge financial support from Science and Technology Planning Project of Guangdong Province (2019B030316027), the National Natural Science Foundation of China (31602182), the 13th Five-Year Plan Marine Economy Innovation Development Demonstration Project (BHSFS004), the Key deployment projects of Chinese Academy of Sciences (ZDRW-ZS-2017-2-1), and the Guangdong Province Engineering Technology Center for molecular Probe & Bio-medical Imaging.

Author information

Authors and Affiliations

Authors

Contributions

Lumei Dai designed and performed the experiment, analyzed the experimental data, and drafted the manuscript. Li Tan carried out the identification of Rhodosorus sp. SCSIO-45730. Xuejie Jin participated in the isolation of Rhodosorus sp. SCSIO-45730. Hualian Wu and Houbo Wu assisted in flocculation experiment and data analysis. Tao Li guided the experiment, helped to draft the manuscript, and revised this manuscript. Wenzhou Xiang took part in designing the study and coordinating the study and assisted with revisions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tao Li or Wenzhou Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Tan, L., Jin, X. et al. Evaluating the potential of carbohydrate-rich microalga Rhodosorus sp. SCSIO-45730 as a feedstock for biofuel and β-glucans using strategies of phosphate optimization and low-cost harvest. J Appl Phycol 32, 3051–3061 (2020). https://doi.org/10.1007/s10811-020-02139-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02139-8

Keywords

Navigation